COMPUTER ORGANIZATION AND ARCHITECTURE

ASSIGNMENT - $\mathbf{3}$

1. Perform the arithmetic operations below with binary numbers and with negative numbers in signed 2's complement representation. Use seven bits to accommodate each number together with its sign. In each case, determine if there is an overflow by checking the carries into and out of the sign bit position.
a. $(+35)+(+40)$
b. $(-35)+(-40)$
c. $(-35)-(+40)$

When two numbers of n digits each are added and the sum occupies $n+1$ digits, we say that an overflow occurred.
A result that contains $n+1$ bits cannot be accommodated in a register with a standard length of n bits.
The detection of an overflow after the addition of two binary numbers depends on whether the numbers are considered to be signed or unsigned. When two unsigned numbers are added, an overflow is detected from the end carry out of the most significant position.
In the case of signed numbers, the leftmost bit always represents the sign, and negative numbers are in 2^{\prime} s complement form. When two signed numbers are added, the sign bit is treated as part of the number and the end carry does not indicate an overflow.
An overflow cannot occur after an addition if one number is positive and the other is negative, since adding a positive number to a negative number produces a result that is smaller than the larger of the two original numbers. An overflow may occur if the two numbers added are both positive or both negative.
An overflow condition can be detected by observing the carry into the sign bit position and the carry out of the sign bit position. If these two carries are not equal, an overflow condition is produced. If the two carries are applied to an exclusive-OR gate, an overflow will be detected when the output of the gate is equal to 1 .
a) +350100011

+40	0101000
+75	1001011

Last two carries are $\mathrm{F}=0$ and $\mathrm{E}=1 . \mathrm{F}$ XOR $\mathrm{E}=1$.Hence overflow had occurred.
b) $-35 \quad 1011101$

-40	1011000
-75	1110101

Last two carries are $\mathrm{F}=1$ and $\mathrm{E}=0 . \mathrm{F}$ XOR $\mathrm{E}=1$. Hence overflow had occurred.
c) $-(35)-(+40)$. Add 2 's complement of 40 to 2 ' complement of 35 . Same as above
2. Show the contents of registers $\mathrm{E}, \mathrm{A}, \mathrm{Q}$, and SC during the process of multiplication of two binary numbers, 11111 (multiplicand) and 10101 (multiplier). The signs are not included.

```
Multiplicand B=11111=(31)
Multiplier in Q - 
Q }=1\mathrm{ , add B-- 0
shrEAQ---- 0111111010 100
Q }=0\mathrm{ , shr EAQ -- 0011111101 011
Q = 1, add B --
    11111
    100110
    O 1001101110010
Q Q = O,shr EAQ - - 01001 10111 001
Q =1, add B --
        1 1 1 1 1
    101000
    [(651\mp@subsup{)}{10}{}
```

3. Show the step-by-step multiplication process using Booth algorithm when the following binary numbers are multiplied. Assume 5-bit registers that hold signed numbers. The multiplicand in both cases is +15 .
a. $(+15) *(+13)$
b. $(+15) *(-13)$
$(+15) \times(+13)=+195=(0011000011)_{2}$
$\mathrm{BR}=01111(+15) ; \overline{\mathrm{BR}}+1=10001(-15) ; \mathrm{QR}=01101(+13)$

$Q_{n} Q_{n+1}$		AC QR	$\mathrm{Q}_{\mathrm{n}+1}$	SC
	Initial	0000001101	0	101
10	Subtract BR	10001		
		10001		
	ashr	1100010110	1	100
01	Add BR	01111		
		00111		
	ashr	0001111011	0	011
10	Subtract BR	10001		
		10100		
	ashr	1101001101	1	010
11	ashr	1110100110	1	001
01	Add BR	01111		
		01100		
	ashr	$\underline{0011000011}$	0	000

4. Show the contents of registers $\mathrm{E}, \mathrm{A}, \mathrm{Q}$, and SC during the process of division of
(a) 10100011 by 1011 ;
(b) 00001111 by 0011 . (Use a dividend of eight bits.)
a).
$\frac{10100011}{1011}=1110+\frac{1001}{1011}$
$\frac{163}{11}=14+\frac{9}{11}$
$B=1011 \quad \bar{B}+1=0101 \quad D V F=0$

	E	A	Q	SC
Dividend in AQ ---	0	1010	0011	100
shl EAQ	1	0100	0110	
add $\bar{B}+1$, suppress carry		0101		
$\mathrm{E}=1$, set Q_{n} to $1-\cdots-$	1	1001	$011{ }^{\square}$	011
shl EAQ	1	0010	1110	
add $\bar{B}+1$, suppress carry		$\underline{0101}$		
$\mathrm{E}=1$, set Q_{n} to $1---$	1	0111	1111	010
shl EAQ-----	0	1111	1110	
add $\overline{\mathrm{B}}+1$, carry to $\mathrm{E}-\mathrm{-}$		$\underline{0101}$		
$\mathrm{E}=1$, set Q_{n} to $1----$	1	0100	1111	001
shl EAQ-----	0	1001	1110	
add $\overline{\mathrm{B}}+1$, carry to $\mathrm{E}-\mathrm{-}$ -		0101		
$E=0$, leave $Q_{n}=0 \ldots$	0	1110	1110	
add B-------		1011		
restore remainder --	1	1001	1110	000

b)

$\frac{1111}{0011}=0101$	$B=0011$	$\bar{B}+1$	$=110$	
	E	A	Q	SC
Dividend in $\mathrm{Q}, \mathrm{A}=0$----		0000	1111	100
shl EAQ-----	0	0001	1110	
add $\bar{B}+1-\ldots-$		1101		
$E=0$, leave $Q_{n}=0 \ldots$	0	1110	$111{ }^{\square}$	
add B		0011		
restore partial remainder --	1	0001		011
shl EAQ -----	0	0011	1100	
add $\bar{B}+1-\cdots-{ }^{\text {a }}$		1101		
$\mathrm{E}=1$, set Q_{n} to $1----{ }^{\text {l }}$	1	0000	1101	010
shl EAQ -------	0	0001	1010	
add $\bar{B}+1-\ldots-{ }^{\text {- }}$		1101		
$E=0$, leave $Q_{n}=0 \ldots-{ }^{\text {a }}$	0	1110	1010	
add $\mathrm{B}-----$		0011		
restore partial remainder ---	1	0001		001
shl EAQ-------	0	0011	0100	
add $\overline{\mathrm{B}}+1-\cdots-{ }^{\text {a }}$	1101			
$E=1$, set Q_{n} to 1-- - -	1	0000	0101	000

