
C H A P T E R 1

Introduction

Solutions to Practice Exercises

1.1 Two disadvantages associated with database systems are listed below.
a. Setup of the database system requires more knowledge, money, skills, and

time.
b. The complexity of the database may result in poor performance.

1.2 Programming language classification:
• Procedural: C, C++, Java, Basic, Fortran, Cobol, Pascal
• Non-procedural: Lisp and Prolog

Note: Lisp and Prolog support some procedural constructs, but the core of both
these languages is non-procedural.

In theory, non-procedural languages are easier to learn, because they let the
programmer concentrate on what needs to be done, rather than how to do it. This
is not always true in practice, especially if procedural languages are learned
first.

1.3 Six major steps in setting up a database for a particular enterprise are:
• Define the high level requirements of the enterprise (this step generates a

document known as the system requirements specification.)
• Define a model containing all appropriate types of data and data relation-

ships.
• Define the integrity constraints on the data.
• Define the physical level.
• For each known problem to be solved on a regular basis (e.g., tasks to be

carried out by clerks or Web users) define a user interface to carry out the
task, and write the necessary application programs to implement the user
interface.
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2 Chapter 1 Introduction

• Create/initialize the database.

1.4 Let tgrid be a two-dimensional integer array of size n × m.
a. • The physical level would simply be m × n (probably consecutive) stor-

age locations of whatever size is specified by the implementation (e.g.,
32 bits each).

• The conceptual level is a grid of boxes, each possibly containing an in-
teger, which is n boxes high by m boxes wide.

• There are 2m×n possible views. For example, a view might be the entire
array, or particular row of the array, or all n rows but only columns 1
through i.

b. • Consider the following Pascal declarations:
type tgrid = array[1..n, 1..m] of integer;
var vgrid1, vgrid2 : tgrid

Then tgrid is a schema, whereas the value of variables vgrid1 and vgrid2
are instances.

• To illustrate further, consider the schema array[1..2, 1..2] of integer. Two
instances of this scheme are:

1 16 17 90
7 89 412 8
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Relational Model

Solutions to Practice Exercises

2.1 a. Πperson name ((employee � manages)
�(manager name = employee2.person name∧ employee.street = employee2.street

∧ employee.city = employee2.city)(ρemployee2 (employee)))

b. The following solutions assume that all people work for exactly one com-
pany. If one allows people to appear in the database (e.g. in employee) but
not appear in works, the problem is more complicated. We give solutions for
this more realistic case later.

Πperson name (σ
company name �= “First Bank Corporation”(works))

If people may not work for any company:

Πperson name(employee) − Πperson name

(σ
(company name = “First Bank Corporation”)

(works))

c. Πperson name (works) − (Πworks.person name (works
�

(works.salary ≤works2.salary ∧works2.company name = “Small Bank Corporation”)

ρworks2(works)))

2.2 a. The left outer theta join of r(R) and s(S) (r �θ s) can be defined as
(r �θ s) ∪ ((r − ΠR(r �θ s)) × (null, null, . . . , null))
The tuple of nulls is of size equal to the number of attributes in S.

b. The right outer theta join of r(R) and s(S) (r � θ s) can be defined as
(r �θ s) ∪ ((null, null, . . . , null) × (s − ΠS(r �θ s)))
The tuple of nulls is of size equal to the number of attributes in R.
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4 Chapter 2 Relational Model

c. The full outer theta join of r(R) and s(S) (r � θ s) can be defined as
(r �θ s) ∪ ((null, null, . . . , null) × (s − ΠS(r �θ s))) ∪
((r − ΠR(r �θ s)) × (null, null, . . . , null))
The first tuple of nulls is of size equal to the number of attributes in R, and
the second one is of size equal to the number of attributes in S.

2.3 a. employee ← Πperson name,street,′′Newtown′′

(σ
person name=“Jones”(employee))

∪ (employee − σ
person name=“Jones”(employee))

b. The update syntax allows reference to a single relation only. Since this up-
date requires access to both the relation to be updated (works) and the man-
ages relation, we must use several steps. First we identify the tuples of works
to be updated and store them in a temporary relation (t1). Then we create
a temporary relation containing the new tuples (t2). Finally, we delete the
tuples in t1, from works and insert the tuples of t2.

t1 ← Πworks.person name,company name,salary

(σworks.person name=manager name(works × manages))

t2 ← Πperson name,company name,1.1∗salary(t1)

works ← (works − t1) ∪ t2



C H A P T E R 3

SQL

Solutions to Practice Exercises

3.1 Note: The participated relation relates drivers, cars, and accidents.
a. Note: this is not the same as the total number of accidents in 1989. We must

count people with several accidents only once.

select count (distinct name)
from accident, participated, person
where accident.report number = participated.report number
and participated.driver id = person.driver id
and date between date ’1989-00-00’ and date ’1989-12-31’

b. We assume the driver was “Jones,” although it could be someone else. Also,
we assume “Jones” owns one Toyota. First we must find the license of the
given car. Then the participated and accident relations must be updated in or-
der to both record the accident and tie it to the given car. We assume values
“Berkeley” for location, ’2001-09-01’ for date and date, 4007 for report number
and 3000 for damage amount.

insert into accident
values (4007, ’2001-09-01’, ’Berkeley’)

insert into participated
select o.driver id, c.license, 4007, 3000
from person p, owns o, car c
where p.name = ’Jones’ and p.driver id = o.driver id and

o.license = c.license and c.model = ’Toyota’
c. Since model is not a key of the car relation, we can either assume that only

one of John Smith’s cars is a Mazda, or delete all of John Smith’s Mazdas
(the query is the same). Again assume name is a key for person.
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6 Chapter 3 SQL

delete car
where model = ’Mazda’ and license in

(select license
from person p, owns o
where p.name = ’John Smith’ and p.driver id = o.driver id)

Note: The owns, accident and participated records associated with the Mazda
still exist.

3.2 a. Query:

select e.employee name, city
from employee e, works w
where w.company name = ’First Bank Corporation’ and

w.employee name = e.employee name

b. If people may work for several companies, the following solution will only
list those who earn more than $10,000 per annum from “First Bank Corpo-
ration” alone.

select *
from employee
where employee name in

(select employee name
from works
where company name = ’First Bank Corporation’ and salary ¿ 10000)

As in the solution to the previous query, we can use a join to solve this one
also.

c. The following solution assumes that all people work for exactly one com-
pany.

select employee name
from works
where company name �= ’First Bank Corporation’

If one allows people to appear in the database (e.g. in employee) but not
appear in works, or if people may have jobs with more than one company,
the solution is slightly more complicated.

select employee name
from employee
where employee name not in

(select employee name
from works
where company name = ’First Bank Corporation’)

d. The following solution assumes that all people work for at most one com-
pany.



Exercises 7

select employee name
from works
where salary > all

(select salary
from works
where company name = ’Small Bank Corporation’)

If people may work for several companies and we wish to consider the
total earnings of each person, the problem is more complex. It can be solved
by using a nested subquery, but we illustrate below how to solve it using
the with clause.

with emp total salary as
(select employee name, sum(salary) as total salary
from works
group by employee name

)
select employee name
from emp total salary
where total salary > all

(select total salary
from emp total salary, works
where works.company name = ’Small Bank Corporation’ and

emp total salary.employee name = works.employee name
)

e. The simplest solution uses the contains comparison which was included in
the original System R Sequel language but is not present in the subsequent
SQL versions.

select T.company name
from company T
where (select R.city

from company R
where R.company name = T.company name)

contains
(select S.city
from company S
where S.company name = ’Small Bank Corporation’)

Below is a solution using standard SQL.
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select S.company name
from company S
where not exists ((select city

from company
where company name = ’Small Bank Corporation’)

except
(select city
from company T
where S.company name = T.company name))

f. Query:

select company name
from works
group by company name
having count (distinct employee name) >= all

(select count (distinct employee name)
from works
group by company name)

g. Query:

select company name
from works
group by company name
having avg (salary) > (select avg (salary)

from works
where company name = ’First Bank Corporation’)

3.3 a. The solution assumes that each person has only one tuple in the employee
relation.

update employee
set city = ’Newton’
where person name = ’Jones’

b. Query:
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update works T
set T.salary = T.salary * 1.03
where T.employee name in (select manager name

from manages)
and T.salary * 1.1 > 100000
and T.company name = ’First Bank Corporation’

update works T
set T.salary = T.salary * 1.1
where T.employee name in (select manager name

from manages)
and T.salary * 1.1 <= 100000
and T.company name = ’First Bank Corporation’

SQL-92 provides a case operation (see Exercise 3.5), using which we give
a more concise solution:

update works T
set T.salary = T.salary ∗

(case
when (T.salary ∗ 1.1 > 100000) then 1.03
else 1.1

)
where T.employee name in (select manager name

from manages) and
T.company name = ’First Bank Corporation’

3.4 Query:

select coalesce(a.name, b.name) as name,
coalesce(a.address, b.address) as address,
a.title,
b.salary

from a full outer join b on a.name = b.name and
a.address = b.address

3.5 We use the case operation provided by SQL-92:
a. To display the grade for each student:

select student id,
(case

when score < 40 then ’F’,
when score < 60 then ’C’,
when score < 80 then ’B’,
else ’A’

end) as grade
from marks
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b. To find the number of students with each grade we use the following query,
where grades is the result of the query given as the solution to part 0.a.

select grade, count(student id)
from grades
group by grade

3.6 The query selects those values of p.a1 that are equal to some value of r1.a1 or
r2.a1 if and only if both r1 and r2 are non-empty. If one or both of r1 and r2
are empty, the cartesian product of p, r1 and r2 is empty, hence the result of the
query is empty. Of course if p itself is empty, the result is as expected, i.e. empty.

3.7 To insert the tuple (“Johnson”, 1900) into the view loan info, we can do the fol-
lowing:
borrower ← (“Johnson”,⊥k) ∪ borrower

loan ← (⊥k,⊥, 1900) ∪ loan
such that ⊥k is a new marked null not already existing in the database.
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Advanced SQL

Solutions to Practice Exercises

4.1 Query:

create table loan
(loan number char(10),
branch name char(15),
amount integer,
primary key (loan number),
foreign key (branch name) references branch)

create table borrower
(customer name char(20),
loan number char(10),
primary key (customer name, loan number),
foreign key (customer name) references customer,
foreign key (loan number) references loan)

Declaring the pair customer name, loan number of relation borrower as primary key
ensures that the relation does not contain duplicates.

4.2 Query:
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12 Chapter 4 Advanced SQL

create table employee
(person name char(20),
street char(30),
city char(30),
primary key (person name) )

create table works
(person name char(20),
company name char(15),
salary integer,
primary key (person name),
foreign key (person name) references employee,
foreign key (company name) references company)

create table company
(company name char(15),
city char(30),
primary key (company name))

ppcreate table manages
(person name char(20),
manager name char(20),
primary key (person name),
foreign key (person name) references employee,
foreign key (manager name) references employee)

Note that alternative datatypes are possible. Other choices for not null at-
tributes may be acceptable.

a. check condition for the works table:
check((employee name, company name) in

(select e.employee name, c.company name
from employee e, company c
where e.city = c.city
)

)

b. check condition for the works table:
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check(
salary < all

(select manager salary
from (select manager name, manages.employee name as emp name,

salary as manager salary
from works, manages
where works.employee name = manages.manager name)

where employee name = emp name
)

)
The solution is slightly complicated because of the fact that inside the se-
lect expression’s scope, the outer works relation into which the insertion is
being performed is inaccessible. Hence the renaming of the employee name
attribute to emp name. Under these circumstances, it is more natural to use
assertions.

4.3 The tuples of all employees of the manager, at all levels, get deleted as well! This
happens in a series of steps. The initial deletion will trigger deletion of all the
tuples corresponding to direct employees of the manager. These deletions will
in turn cause deletions of second level employee tuples, and so on, till all direct
and indirect employee tuples are deleted.

4.4 The assertion name is arbitrary. We have chosen the name perry. Note that since
the assertion applies only to the Perryridge branch we must restrict attention to
only the Perryridge tuple of the branch relation rather than writing a constraint
on the entire relation.

create assertion perry check
(not exists (select *

from branch
where branch name = ’Perryridge’ and

assets �= (select sum (amount)
from loan
where branch name = ’Perryridge’)))

4.5 Writing queries in SQL is typically much easier than coding the same queries in a
general-purpose programming language. However not all kinds of queries can
be written in SQL. Also nondeclarative actions such as printing a report, inter-
acting with a user, or sending the results of a query to a graphical user interface
cannot be done from within SQL. Under circumstances in which we want the
best of both worlds, we can choose embedded SQL or dynamic SQL, rather than
using SQL alone or using only a general-purpose programming language.

Embedded SQL has the advantage of programs being less complicated since it
avoids the clutter of the ODBC or JDBC function calls, but requires a specialized
preprocessor.
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Other Relational Languages

Solutions to Practice Exercises

5.1 a. {t | ∃ q ∈ r (q[A] = t[A])}
b. {t | t ∈ r ∧ t[B] = 17}
c. {t | ∃ p ∈ r ∃ q ∈ s (t[A] = p[A]∧ t[B] = p[B]∧ t[C] = p[C] ∧ t[D] = q[D]

∧ t[E] = q[E] ∧ t[F ] = q[F ])}
d. {t | ∃ p ∈ r ∃ q ∈ s (t[A] = p[A] ∧ t[F ] = q[F ] ∧ p[C] = q[D]}

5.2 a. {< t > | ∃ p, q (< t, p, q > ∈ r1)}
b. {< a, b, c > | < a, b, c > ∈ r1 ∧ b = 17}
c. {< a, b, c > | < a, b, c > ∈ r1 ∨ < a, b, c > ∈ r2}
d. {< a, b, c > | < a, b, c > ∈ r1 ∧ < a, b, c > ∈ r2}
e. {< a, b, c > | < a, b, c > ∈ r1 ∧ < a, b, c > �∈ r2}
f. {< a, b, c > | ∃ p, q (< a, b, p > ∈ r1 ∧ < q, b, c > ∈ r2)}

5.3 a. {< a > | ∃ b (< a, b > ∈ r ∧ b = 7)}
i.

A B
P. 17

r

ii. query (X) :- r (X, 17)
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b. {< a, b, c > | < a, b > ∈ r ∧ < a, c > ∈ s}
i.

A Br

A C
 _a  _c

 _a  _b

s

P.
result BA C

 _a  _b  _c

ii. query(X, Y, Z) :- r(X, Y), s(X, Z)

c. {< a > | ∃ c (< a, c > ∈ s ∧ ∃ b1, b2 (< a, b1 > ∈ r ∧ < c, b2 > ∈ r ∧ b1 >
b2))}

i.

A Br

A C
 P._a  _c

 _a  >_s
 _c  _s

s

ii. query (X) :- s (X, Y ), r (X, Z), r (Y, W ), Z > W

5.4 a. Query:

query (X) :- p (X)
p (X) :- manages (X, “Jones”)
p (X) :- manages (X, Y ), p (Y )

b. Query:

query(X, C) :- p(X), employee(X, S, C)
p(X) :- manages(X, “Jones”)
p(X) :- manages(X, Y), p(Y)

c. Query:

query(X, Y) :- p(X, W), p(Y, W)
p(X, Y) :- manages(X, Y)
p(X, Y) :- manages(X, Z), p(Z, Y)

d. Query:
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query(X, Y) :- p(X, Y)
p(X, Y) :- manages(X, Z), manages(Y, Z)
p(X, Y) :- manages(X, V), manages(Y, W), p(V, W)

5.5 A Datalog rule has two parts, the head and the body. The body is a comma sep-
arated list of literals. A positive literal has the form p(t1, t2, . . . , tn ) where p is
the name of a relation with n attributes, and t1, t2, . . . , tn are either constants
or variables. A negative literal has the form ¬p(t1, t2, . . . , tn) where p has n at-
tributes. In the case of arithmetic literals, p will be an arithmetic operator like >,
= etc.

We consider only safe rules; see Section 5.4.4 for the definition of safety of
Datalog rules. Further, we assume that every variable that occurs in an arith-
metic literal also occurs in a positive non-arithmetic literal.

Consider first a rule without any negative literals. To express the rule as an ex-
tended relational-algebra view, we write it as a join of all the relations referred to
in the (positive) non-arithmetic literals in the body, followed by a selection. The
selection condition is a conjunction obtained as follows. If p1 (X, Y ), p2 (Y, Z)
occur in the body, where p1 is of the schema (A, B) and p2 is of the schema
(C, D), then p1.B = p2.C should belong to the conjunction. The arithmetic
literals can then be added to the condition.

As an example, the Datalog query

query(X, Y) :- works(X, C, S1), works(Y, C, S2), S1 > S2, manages(X, Y)

becomes the following relational-algebra expression:

E1 = σ(w1.company name = w2.company name ∧ w1.salary>w2.salary ∧
manages.person name = w1.person name ∧ manages.manager name = w2.person name)

(ρw1(works) × ρw2(works) × manages)

Now suppose the given rule has negative literals. First suppose that there are
no constants in the negative literals; recall that all variables in a negative literal
must also occur in a positive literal. Let ¬q(X, Y ) be the first negative literal,
and let it be of the schema (E, F ). Let Ei be the relational algebra expression
obtained after all positive and arithmetic literals have been handled. To handle
this negative literal, we generate the expression

Ej = Ei � (ΠA1,A2(Ei) − q)

where A1 and A2 are the attribute names of two columns in Ei which corre-
spond to X and Y respectively.

Now let us consider constants occurring in a negative literal. Consider a neg-
ative literal of the form ¬q(a, b, Y ) where a and b are constants. Then, in the
above expression defining Ej we replace q by σA1=a∧A2=b(q).

Proceeding in a similar fashion, the remaining negative literals are processed,
finally resulting in an expression Ew.
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Finally the desired attributes are projected out of the expression. The at-
tributes in Ew corresponding to the variables in the head of the rule become
the projection attributes.

Thus our example rule finally becomes the view:

create view query as
Πw1.person name, w2.person name(E2)

If there are multiple rules for the same predicate, the relational-algebra ex-
pression defining the view is the union of the expressions corresponding to the
individual rules.

The above conversion can be extended to handle rules that satisfy some weaker
forms of the safety conditions, and where some restricted cases where the vari-
ables in arithmetic predicates do not appear in a positive non-arithmetic literal.



C H A P T E R 6

Database Design and
the E-R Model

Solutions to Practice Exercises

6.1 See Figure 6.1

6.2 See Figure 6.2.
In the answer given here, the main entity sets are student, course, course offering,
and instructor. The entity set course offering is a weak entity set dependent on
course. The assumptions made are :

a. A class meets only at one particular place and time. This E-R diagram cannot
model a class meeting at different places at different times.

b. There is no guarantee that the database does not have two classes meeting
at the same place and time.

person owns car

participated accident

address

damage_amount

model

yearlicensename

report_number
date

location

driver_id

driver

Figure 6.1 E-R diagram for a car insurance company.
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program

course 
offerings 

dept title

course

courseno

title

credits

syllabus

prerequisite

maincourse

requires

secno

is 
offered

student

name

grade

teaches

year semester

roomtime

enrols instructor

nameiidsid

Figure 6.2 E-R diagram for a university.

6.3 a. See Figure 6.3
b. See Figure 6.4

6.4 See Figure 6.5

course 
offerings

secno

courseno

exam

name place

time

marksprogram

eid

student

name

year semester

roomtime

takes

sid

Figure 6.3 E-R diagram for marks database.
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course 
offerings

secno

courseno

program

exam

name place

time

examofmarks

student

name

year semester

roomtime

takes

sid

Figure 6.4 Another E-R diagram for marks database.

6.5 By using one entity set many times we are missing relationships in the model.
For example, in the E-R diagram in Figure 6.6: the students taking classes are
the same students who are athletes, but this model will not show that.

6.6 a. See Figure 6.7
b. The additional entity sets are useful if we wish to store their attributes as

part of the database. For the course entity set, we have chosen to include
three attributes. If only the primary key (c number) were included, and if
courses have only one section, then it would be appropriate to replace the
course (and section) entity sets by an attribute (c number) of exam. The reason
it is undesirable to have multiple attributes of course as attributes of exam is
that it would then be difficult to maintain data on the courses, particularly
if a course has no exam or several exams. Similar remarks apply to the room
entity set.

stadiummatchiddate

match player

name age

played

season_score

opponent

own_score opp_score score

Figure 6.5 E-R diagram for favourite team statistics.
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namess#

takes

namess# dept

student

student

plays sport

courseno

teamname

class

Figure 6.6 E-R diagram with entity duplication.

6.7 a. The criteria to use are intuitive design, accurate expression of the real-world
concept and efficiency. A model which clearly outlines the objects and rela-
tionships in an intuitive manner is better than one which does not, because
it is easier to use and easier to change. Deciding between an attribute and
an entity set to represent an object, and deciding between an entity set and
relationship set, influence the accuracy with which the real-world concept
is expressed. If the right design choice is not made, inconsistency and/or
loss of information will result. A model which can be implemented in an
efficient manner is to be preferred for obvious reasons.

b. Consider three different alternatives for the problem in Exercise 6.2.
• See Figure 6.8
• See Figure 6.9
• See Figure 6.10

Each alternative has merits, depending on the intended use of the database.
Scheme 6.8 has been seen earlier. Scheme 6.10 does not require a separate
entity for prerequisites. However, it will be difficult to store all the prerequi-

name

section for

time

c-number

section of

s-number

course

examinroom

r-number capacity building exam_id

department enrollment

Figure 6.7 E-R diagram for exam scheduling.
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program

course 
offerings

dept title

course

courseno

title

credits

syllabus

prerequisite

maincourse

requires

secno

student

name

teaches

year semester

roomtime

enrols

sid

instructor

nameiid

is 
offered

grade

Figure 6.8 E-R diagram for University(a) .

sites(being a multi-valued attribute). Scheme 6.9 treats prerequisites as well
as classrooms as separate entities, making it useful for gathering data about
prerequisites and room usage. Scheme 6.8 is in between the others, in that
it treats prerequisites as separate entities but not classrooms. Since a regis-
trar’s office probably has to answer general questions about the number of
classes a student is taking or what are all the prerequisites of a course, or
where a specific class meets, scheme 6.9 is probably the best choice.

6.8 a. If a pair of entity sets are connected by a path in an E-R diagram, the en-
tity sets are related, though perhaps indirectly. A disconnected graph im-
plies that there are pairs of entity sets that are unrelated to each other. If we
split the graph into connected components, we have, in effect, a separate
database corresponding to each connected component.

b. As indicated in the answer to the previous part, a path in the graph between
a pair of entity sets indicates a (possibly indirect) relationship between the
two entity sets. If there is a cycle in the graph then every pair of entity sets
on the cycle are related to each other in at least two distinct ways. If the E-R
diagram is acyclic then there is a unique path between every pair of entity
sets and, thus, a unique relationship between every pair of entity sets.

6.9 a. Let E = {e1, e2}, A = {a1, a2}, B = {b1}, C = {c1}, RA = {(e1, a1), (e2, a2)},
RB = {(e1, b1)}, and RC = {(e1, c1)}. We see that because of the tuple
(e2, a2), no instance of R exists which corresponds to E, RA, RB and RC .

b. See Figure 6.11. The idea is to introduce total participation constraints be-
tween E and the relationships RA, RB , RC so that every tuple in E has a
relationship with A, B and C.
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program

course 
offerings 

dept title

course

courseno

title

credits

syllabus

prerequisite

maincourse
requires

secno

is
offered

meetsing

room_no building

iss#

instructor

name

student

namess#

grade

teaches

year semester

time

enrols

room

Figure 6.9 E-R diagram for University(b).

program

course 
offerings

dept title

course

courseno

title

syllabus

secno

is 
offered

prerequisite

iss#

instructor

name

student

namess#

grade

teaches

year semester

roomtime

enrols

credits

Figure 6.10 E-R diagram for University(c).
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A

E CB RB

RA

RC

Figure 6.11 E-R diagram to Exercise 6.9b.

c. Suppose A totally participates in the relationhip R, then introduce a total
participation constraint between A and RA.

d. Consider E as a weak entity set and RA, RB and RC as its identifying rela-
tionship sets. See Figure 6.12.

6.10 The primary key of a weak entity set can be inferred from its relationship with
the strong entity set. If we add primary key attributes to the weak entity set,
they will be present in both the entity set and the relationship set and they have
to be the same. Hence there will be redundancy.

6.11 A inherits all the attributes of X plus it may define its own attributes. Similarly
C inherits all the attributes of Y plus its own attributes. B inherits the attributes
of both X and Y. If there is some attribute name which belongs to both X and Y,
it may be referred to in B by the qualified name X.name or Y.name.

6.12 In this example, we assume that both banks have the shared identifiers for cus-
tomers, such as the social security number. We see the general solution in the
next exercise.

Each of the problems mentioned does have potential for difficulties.
a. branch name is the primary-key of the branch entity set. Therefore while merg-

ing the two banks’ entity sets, if both banks have a branch with the same
name, one of them will be lost.

b. customers participate in the relationship sets cust banker, borrower and de-
positor. While merging the two banks’ customer entity sets, duplicate tuples

B E C

A

C
R

B

RA

R

Figure 6.12 E-R diagram to Exercise 6.9d.
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of the same customer will be deleted. Therefore those relations in the three
mentioned relationship sets which involved these deleted tuples will have
to be updated. Note that if the tabular representation of a relationship set is
obtained by taking a union of the primary keys of the participating entity
sets, no modification to these relationship sets is required.

c. The problem caused by loans or accounts with the same number in both the
banks is similar to the problem caused by branches in both the banks with
the same branch name.

To solve the problems caused by the merger, no schema changes are required.
Merge the customer entity sets removing duplicate tuples with the same social
security field. Before merging the branch entity sets, prepend the old bank name

to the branch name attribute in each tuple. The employee entity sets can be merged
directly, and so can the payment entity sets. No duplicate removal should be
performed. Before merging the loan and account entity sets, whenever there is a
number common in both the banks, the old number is replaced by a new unique
number, in one of the banks.

Next the relationship sets can be merged. Any relation in any relationship
set which involves a tuple which has been modified earlier due to the merger,
is itself modified to retain the same meaning. For example let 1611 be a loan
number common in both the banks prior to the merger, and let it be replaced by
a new unique number 2611 in one of the banks, say bank 2. Now all the relations
in borrower, loan branch and loan payment of bank 2 which refer to loan number
1611 will have to be modified to refer to 2611. Then the merger with bank 1’s
corresponding relationship sets can take place.

6.13 This is a case in which the schemas of the two banks differ, so the merger be-
comes more difficult. The identifying attribute for persons in the US is social-
security, and in Canada it is social-insurance. Therefore the merged schema can-
not use either of these. Instead we introduce a new attribute person id, and use
this uniformly for everybody in the merged schema. No other change to the
schema is required. The values for the person id attribute may be obtained by
several ways. One way would be to prepend a country code to the old social-
security or social-insurance values (“U” and “C” respectively, for instance), to
get the corresponding person id values. Another way would be to assign fresh
numbers starting from 1 upwards, one number to each social-security and social-
insurance value in the old databases.

Once this has been done, the actual merger can proceed as according to the
answer to the previous question. If a particular relationship set, say borrower, in-
volves only US customers, this can be expressed in the merged database by spe-
cializing the entity-set customer into us customer and canada customer, and mak-
ing only us customer participate in the merged borrower. Similarly employee can
be specialized if needed.
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Relational-Database Design

Solutions to Practice Exercises

7.1 A decomposition {R1, R2} is a lossless-join decomposition if R1 ∩ R2 → R1

or R1 ∩ R2 → R2. Let R1 = (A, B, C), R2 = (A, D, E), and R1 ∩ R2 = A.
Since A is a candidate key (see Practice Exercise 7.6), Therefore R1 ∩ R2 → R1.

7.2 The nontrivial functional dependencies are: A → B and C → B, and a de-
pendency they logically imply: AC → B. There are 19 trivial functional depen-
dencies of the form α → β, where β ⊆ α. C does not functionally determine
A because the first and third tuples have the same C but different A values. The
same tuples also show B does not functionally determine A. Likewise, A does
not functionally determine C because the first two tuples have the same A value
and different C values. The same tuples also show B does not functionally de-
termine C.

7.3 Let Pk(r) denote the primary key attribute of relation r.
• The functional dependencies Pk(account) → Pk (customer) and Pk(customer)
→ Pk(account) indicate a one-to-one relationship because any two tuples
with the same value for account must have the same value for customer,
and any two tuples agreeing on customer must have the same value for
account.

• The functional dependency Pk(account) → Pk(customer) indicates a many-
to-one relationship since any account value which is repeated will have the
same customer value, but many account values may have the same cus-
tomer value.

7.4 To prove that:

if α → β and α → γ then α → βγ
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Following the hint, we derive:
α → β given
αα → αβ augmentation rule
α → αβ union of identical sets
α → γ given
αβ → γ β augmentation rule
α → βγ transitivity rule and set union commutativity

7.5 Proof using Armstrong’s axioms of the Pseudotransitivity Rule:
if α → β and γ β → δ, then αγ → δ.

α → β given
αγ → γ β augmentation rule and set union commutativity
γ β → δ given
αγ → δ transitivity rule

7.6 Note: It is not reasonable to expect students to enumerate all of F+. Some short-
hand representation of the result should be acceptable as long as the nontrivial
members of F+ are found.

Starting with A → BC, we can conclude: A → B and A → C.

Since A → B and B → D, A → D (decomposition, transitive)
Since A → CD and CD → E, A → E (union, decomposition, transitive)
Since A → A, we have (reflexive)
A → ABCDE from the above steps (union)
Since E → A, E → ABCDE (transitive)
Since CD → E, CD → ABCDE (transitive)
Since B → D and BC → CD, BC → ABCDE (augmentative, transitive)
Also, C → C, D → D, BD → D, etc.

Therefore, any functional dependency with A, E, BC, or CD on the left hand
side of the arrow is in F+, no matter which other attributes appear in the FD.
Allow * to represent any set of attributes in R, then F+ is BD → B, BD → D,
C → C, D → D, BD → BD, B → D, B → B, B → BD, and all FDs of
the form A ∗ → α, BC ∗ → α, CD ∗ → α, E ∗ → α where α is any subset of
{A, B, C, D, E}. The candidate keys are A, BC, CD, and E.

7.7 The given set of FDs F is:

A → BC
CD → E
B → D
E → A

The left side of each FD in F is unique. Also none of the attributes in the left
side or right side of any of the FDs is extraneous. Therefore the canonical cover
Fc is equal to F .
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7.8 The algorithm is correct because:

• If A is added to result then there is a proof that α → A. To see this, observe
that α → α trivially so α is correctly part of result. If A �∈ α is added to
result there must be some FD β → γ such that A ∈ γ and β is already a
subset of result. (Otherwise fdcount would be nonzero and the if condition
would be false.) A full proof can be given by induction on the depth of
recursion for an execution of addin, but such a proof can be expected only
from students with a good mathematical background.

• If A ∈ α+, then A is eventually added to result. We prove this by induction
on the length of the proof of α → A using Armstrong’s axioms. First observe
that if procedure addin is called with some argument β, all the attributes in
β will be added to result. Also if a particular FD’s fdcount becomes 0, all
the attributes in its tail will definitely be added to result. The base case of
the proof, A ∈ α ⇒ A ∈ α+, is obviously true because the first call to
addin has the argument α. The inductive hypotheses is that if α → A can
be proved in n steps or less then A ∈ result. If there is a proof in n + 1
steps that α → A, then the last step was an application of either reflexivity,
augmentation or transitivity on a fact α → β proved in n or fewer steps.
If reflexivity or augmentation was used in the (n + 1)st step, A must have
been in result by the end of the nth step itself. Otherwise, by the inductive
hypothesis β ⊆ result. Therefore the dependency used in proving β → γ,
A ∈ γ will have fdcount set to 0 by the end of the nth step. Hence A will
be added to result.

To see that this algorithm is more efficient than the one presented in the chap-
ter note that we scan each FD once in the main program. The resulting array
appears has size proportional to the size of the given FDs. The recursive calls to
addin result in processing linear in the size of appears. Hence the algorithm has
time complexity which is linear in the size of the given FDs. On the other hand,
the algorithm given in the text has quadratic time complexity, as it may perform
the loop as many times as the number of FDs, in each loop scanning all of them
once.

7.9 a. The query is given below. Its result is non-empty if and only if b → c does
not hold on r.

select b
from r
group by b
having count(distinct c) > 1

b.
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create assertion b-to-c check
(not exists

(select b
from r
group by b
having count(distinct c) > 1
)

)

7.10 Consider some tuple t in u.
Note that ri = ΠRi

(u) implies that t[Ri] ∈ ri, 1 ≤ i ≤ n. Thus,

t[R1] � t[R2] � . . . � t[Rn] ∈ r1 � r2 � . . . � rn

By the definition of natural join,

t[R1] � t[R2] � . . . � t[Rn] = Πα (σβ (t[R1] × t[R2] × . . . × t[Rn]))

where the condition β is satisfied if values of attributes with the same name
in a tuple are equal and where α = U . The cartesian product of single tuples
generates one tuple. The selection process is satisfied because all attributes with
the same name must have the same value since they are projections from the
same tuple. Finally, the projection clause removes duplicate attribute names.

By the definition of decomposition, U = R1∪R2∪ . . .∪Rn, which means that
all attributes of t are in t[R1] � t[R2] � . . . � t[Rn]. That is, t is equal to the result
of this join.

Since t is any arbitrary tuple in u,

u ⊆ r1 � r2 � . . . � rn

7.11 The dependency B → D is not preserved. F1, the restriction of F to (A, B, C)
is A → ABC, A → AB, A → AC, A → BC, A → B, A → C, A → A,
B → B, C → C, AB → AC, AB → ABC, AB → BC, AB → AB,
AB → A, AB → B, AB → C, AC (same as AB), BC (same as AB), ABC
(same as AB). F2, the restriction of F to (C, D, E) is A → ADE, A → AD,
A → AE, A → DE, A → A, A → D, A → E, D → D, E (same as A), AD,
AE, DE, ADE (same as A). (F1 ∪ F2)+ is easily seen not to contain B → D
since the only FD in F1 ∪ F2 with B as the left side is B → B, a trivial FD. We
shall see in Practice Exercise 7.13 that B → D is indeed in F+. Thus B → D is
not preserved. Note that CD → ABCDE is also not preserved.

A simpler argument is as follows: F1 contains no dependencies with D on the
right side of the arrow. F2 contains no dependencies with B on the left side of
the arrow. Therefore for B → D to be preserved there must be an FD B → α
in F+

1 and α → D in F+
2 (so B → D would follow by transitivity). Since the

intersection of the two schemes is A, α = A. Observe that B → A is not in F+
1

since B+ = BD.
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7.12 Let F be a set of functional dependencies that hold on a schema R. Let σ =
{R1, R2, . . . , Rn} be a dependency-preserving 3NF decomposition of R. Let X
be a candidate key for R.

Consider a legal instance r of R. Let j = ΠX(r) � ΠR1(r) � ΠR2(r) . . . �

ΠRn
(r). We want to prove that r = j.

We claim that if t1 and t2 are two tuples in j such that t1[X] = t2[X], then
t1 = t2. To prove this claim, we use the following inductive argument –
Let F ′ = F1 ∪ F2 ∪ . . . ∪ Fn, where each Fi is the restriction of F to the schema
Ri in σ. Consider the use of the algorithm given in Figure 7.9 to compute the
closure of X under F ′. We use induction on the number of times that the for
loop in this algorithm is executed.
• Basis : In the first step of the algorithm, result is assigned to X , and hence

given that t1[X] = t2[X], we know that t1[result] = t2[result] is true.
• Induction Step : Let t1[result] = t2[result] be true at the end of the k th exe-

cution of the for loop.
Suppose the functional dependency considered in the k + 1 th execution
of the for loop is β → γ, and that β ⊆ result. β ⊆ result implies that
t1[β] = t2[β] is true. The facts that β → γ holds for some attribute set Ri

in σ, and that t1[Ri] and t2[Ri] are in ΠRi
(r) imply that t1[γ] = t2[γ] is

also true. Since γ is now added to result by the algorithm, we know that
t1[result] = t2[result] is true at the end of the k + 1 th execution of the for
loop.

Since σ is dependency-preserving and X is a key for R, all attributes in R are in
result when the algorithm terminates. Thus, t1[R] = t2[R] is true, that is, t1 = t2
– as claimed earlier.

Our claim implies that the size of ΠX(j) is equal to the size of j. Note also
that ΠX(j) = ΠX(r) = r (since X is a key for R). Thus we have proved that the
size of j equals that of r. Using the result of Practice Exercise 7.10, we know that
r ⊆ j. Hence we conclude that r = j.

Note that since X is trivially in 3NF, σ ∪ {X} is a dependency-preserving
lossless-join decomposition into 3NF.

7.13 Given the relation R′ = (A, B, C, D) the set of functional dependencies F ′ =
A → B, C → D, B → C allows three distinct BCNF decompositions.

R1 = {(A, B), (C, D), (B, C)}

is in BCNF as is

R2 = {(A, B), (C, D), (A, C)}

R2 = {(A, B), (C, D), (A, C)}

R3 = {(B, C), (A, D), (A, B)}

7.14 Suppose R is in 3NF according to the textbook definition. We show that it is in
3NF according to the definition in the exercise. Let A be a nonprime attribute in
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R that is transitively dependent on a key α for R. Then there exists β ⊆ R such
that β → A, α → β, A �∈ α, A �∈ β, and β → α does not hold. But then
β → A violates the textbook definition of 3NF since
• A �∈ β implies β → A is nontrivial
• Since β → α does not hold, β is not a superkey
• A is not any candidate key, since A is nonprime

Now we show that if R is in 3NF according to the exercise definition, it is in 3NF
according to the textbook definition. Suppose R is not in 3NF according the the
textbook definition. Then there is an FD α → β that fails all three conditions.
Thus
• α → β is nontrivial.
• α is not a superkey for R.
• Some A in β − α is not in any candidate key.

This implies that A is nonprime and α → A. Let γ be a candidate key for R.
Then γ → α, α → γ does not hold (since α is not a superkey), A �∈ α, and
A �∈ γ (since A is nonprime). Thus A is transitively dependent on γ, violating
the exercise definition.

7.15 Referring to the definitions in Practice Exercise 7.14, a relation schema R is said
to be in 3NF if there is no non-prime attribute A in R for which A is transitively
dependent on a key for R.

We can also rewrite the definition of 2NF given here as :
“A relation schema R is in 2NF if no non-prime attribute A is partially dependent
on any candidate key for R.”

To prove that every 3NF schema is in 2NF, it suffices to show that if a non-
prime attribute A is partially dependent on a candidate key α, then A is also
transitively dependent on the key α.

Let A be a non-prime attribute in R. Let α be a candidate key for R. Suppose
A is partially dependent on α.
• From the definition of a partial dependency, we know that for some proper

subset β of α, β → A.
• Since β ⊂ α, α → β. Also, β → α does not hold, since α is a candidate key.
• Finally, since A is non-prime, it cannot be in either β or α.

Thus we conclude that α → A is a transitive dependency. Hence we have proved
that every 3NF schema is also in 2NF.

7.16 The relation schema R = (A, B, C, D, E) and the set of dependencies

A →→ BC
B →→ CD
E →→ AD

constitute a BCNF decomposition, however it is clearly not in 4NF. (It is BCNF
because all FDs are trivial).
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Application Design
and Development

Solutions to Practice Exercises

8.1 The CGI interface starts a new process to service each request, which has a signif-
icant operating system overhead. On the other hand, servelets are run as threads
of an existing process, avoiding this overhead. Further, the process running
threads could be the Web server process itself, avoiding interprocess commu-
nication which can be expensive. Thus, for small to moderate sized tasks, the
overhead of Java is less than the overheads saved by avoiding process creating
and communication.

For tasks involving a lot of CPU activity, this may not be the case, and using
CGI with a C or C++ program may give better performance.

8.2 Most computers have limits on the number of simultaneous connections they
can accept. With connectionless protocols, connections are broken as soon as
the request is satisfied, and therefore other clients can open connections. Thus
more clients can be served at the same time. A request can be routed to any one
of a number of different servers to balance load, and if a server crashes another
can take over without the client noticing any problem.

The drawback of connectionless protocols is that a connection has to be reestab-
lished every time a request is sent. Also, session information has to be sent each
time in form of cookies or hidden fields. This makes them slower than the pro-
tocols which maintain connections in case state information is required.

8.3 Caching can be used to improve performance by exploiting the commonalities
between transactions.

a. If the application code for servicing each request needs to open a connection
to the database, which is time consuming, then a pool of open connections
may be created before hand, and each request uses one from those.

33



34 Chapter 8 Application Design and Development

b. The results of a query generated by a request can be cached. If same request
comes agian, or generates the same query, then the cached result can be used
instead of connecting to database again.

c. The final webpage generated in response to a request can be cached. If the
same request comes again, then the cached page can be outputed.

8.4 For inserting into the materialized view branch cust we must set a database trig-
ger on an insert into depositor and account. We assume that the database system
uses immediate binding for rule execution. Further, assume that the current ver-
sion of a relation is denoted by the relation name itself, while the set of newly
inserted tuples is denoted by qualifying the relation name with the prefix – in-
serted.

The active rules for this insertion are given below –

define trigger insert into branch cust via depositor
after insert on depositor
referencing new table as inserted for each statement
insert into branch cust

select branch name, customer name
from inserted, account
where inserted.account number = account.account number

define trigger insert into branch cust via account
after insert on account
referencing new table as inserted for each statement
insert into branch cust

select branch name, customer name
from depositor, inserted
where depositor.account number = inserted.account number

Note that if the execution binding was deferred (instead of immediate), then
the result of the join of the set of new tuples of account with the set of new tuples
of depositor would have been inserted by both active rules, leading to duplication
of the corresponding tuples in branch cust.

The deletion of a tuple from branch cust is similar to insertion, except that
a deletion from either depositor or account will cause the natural join of these
relations to have a lesser number of tuples. We denote the newly deleted set of
tuples by qualifying the relation name with the keyword deleted.

define trigger delete from branch cust via depositor
after delete on depositor
referencing old table as deleted for each statement
delete from branch cust

select branch name, customer name
from deleted, account
where deleted.account number = account.account number
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define trigger delete from branch cust via account
after delete on account
referencing old table as deleted for each statement
delete from branch cust

select branch name, customer name
from depositor, deleted
where depositor.account number = deleted.account number

8.5 Query:

create trigger check-delete-trigger after delete on account
referencing old row as orow
for each row
delete from depositor
where depositor.customer name not in

( select customer name from depositor
where account number <> orow.account number )

end

8.6 The key problem with digital certificates (when used offline, without contacting
the certificate issuer) is that there is no way to withdraw them.

For instance (this actually happened, but names of the parties have been
changed) person C claims to be an employee of company X and get a new
public key certified by the certifying authority A. Suppose the authority A incor-
rectly believed that C was acting on behalf of company X , it gives C a certificate
cert. Now, C can communicate with person Y , who checks the certificate cert
presenetd by C, and believes the public key contained in cert really belongs to
X . Now C would communicate with Y using the public key, and Y trusts the
communication is from company X .

Person Y may now reveal confidential information to C, or accept purchase
order from C, or execute programs certified by C, based on the public key, think-
ing he is actually communicating with company X . In each case there is poten-
tial for harm to Y .

Even if A detects the impersonation, as long as Y does not check with A (the
protocol does not require this check), there is no way for Y to find out that the
certificate is forged.

If X was a certification authority itself, further levels of fake certificates can
be created. But certificates that are not part of this chain would not be affected.

8.7 A scheme for storing passwords would be to encrypt each password, and then
use a hash index on the user-id. The user-id can be used to easily access the
encrypted password. The password being used in a login attempt is then en-
crypted and compared with the stored encryption of the correct password. An
advantage of this scheme is that passwords are not stored in clear text and the
code for decryption need not even exist!
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Object-Based Databases

Solutions to Practice Exercises

9.1 For this problem, we use table inheritance. We assume that MyDate, Color and
DriveTrainType are pre-defined types.

create type Vehicle
(vehicle id integer,
license number char(15),
manufacturer char(30),
model char(30),
purchase date MyDate,
color Color)

create table vehicle of type Vehicle

create table truck
(cargo capacity integer)
under vehicle

create table sportsCar
(horsepower integer
renter age requirement integer)

under vehicle

create table van
(num passengers integer)
under vehicle

37



38 Chapter 9 Object-Based Databases

create table offRoadVehicle
(ground clearance real
driveTrain DriveTrainType)

under vehicle

9.2 a. No Answer.
b. Queries in SQL:1999.

i. Program:
select ename
from emp as e, e.ChildrenSet as c
where ’March’ in

(select birthday.month
from c
)

ii. Program:
select e.ename
from emp as e, e.SkillSet as s, s.ExamSet as x
where s.type = ’typing’ and x.city = ’Dayton’

iii. Program:
select distinct s.type
from emp as e, e.SkillSet as s

9.3 a. The corresponding SQL:1999 schema definition is given below. Note that the
derived attribute age has been translated into a method.
create type Name

(first name varchar(15),
middle initial char,
last name varchar(15))

create type Street
(street name varchar(15),
street number varchar(4),
apartment number varchar(7))

create type Address
(street Street,
city varchar(15),
state varchar(15),
zip code char(6))

create table customer
(name Name,
customer id varchar(10),
address Adress,
phones char(7) array[10],
dob date)
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method integer age()

b. create function Name (f varchar(15), m char, l varchar(15))
returns Name
begin

set first name = f;
set middle initial = m;
set last name = l;

end
create function Street (sname varchar(15), sno varchar(4), ano varchar(7))
returns Street
begin

set street name = sname;
set street number = sno;
set apartment number =ano;

end
create function Address (s Street, c varchar(15), sta varchar(15), zip varchar(6))
returns Address
begin

set street = s;
set city = c;
set state =sta;
set zip code =zip;

end

9.4 a. The schema definition is given below. Note that backward references can
be addedbut they are not so important as in OODBS because queries can be
written in SQL and joins can take care of integrity constraints.

create type Employee
(person name varchar(30),
street varchar(15),
city varchar(15))

create type Company
(company name varchar(15),
(city varchar(15))

create table employee of Employee
create table company of Company
create type Works

(person ref(Employee) scope employee,
comp ref(Company) scope company,
salary int)

create table works of Works
create type Manages

(person ref(Employee) scope employee,
(manager ref(Employee) scope employee)
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create table manages of Manages

b. i. select comp− >name
from works
group by comp
having count(person) ≥ all(select count(person)

from works
group by comp)

ii. select comp− >name
from works
group by comp
having sum(salary) ≤ all(select sum(salary)

from works
group by comp)

iii. select comp− >name
from works
group by comp
having avg(salary) > (select avg(salary)

from works
where comp− >company name=”First Bank Corporation”)

9.5 a. A computer-aided design system for a manufacturer of airplanes:
An OODB system would be suitable for this. That is because CAD requires

complex data types, and being computation oriented, CAD tools are typi-
cally used in a programming language environment needing to access the
database.

b. A system to track contributions made to candidates for public office:
A relational system would be apt for this, as data types are expected to

be simple, and a powerful querying mechanism is essential.
c. An information system to support the making of movies:

Here there will be extensive use of multimedia and other complex data
types. But queries are probably simple, and thus an object relational system
is suitable.

9.6 An entity is simply a collection of variables or data items. An object is an encap-
sulation of data as well as the methods (code) to operate on the data. The data
members of an object are directly visible only to its methods. The outside world
can gain access to the object’s data only by passing pre-defined messages to it,
and these messages are implemented by the methods.
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XML

Solutions to Practice Exercises

10.1 a. The XML representation of data using attributes is shown in Figure 10.1.
b. The DTD for the bank is shown in Figure 10.2.

10.2 Query:

<!DOCTYPE db [
<!ELEMENT emp (ename, children*, skills*)>
<!ELEMENT children (name, birthday)>
<!ELEMENT birthday (day, month, year)>
<!ELEMENT skills (type, exams+)>
<!ELEMENT exams (year, city)>
<!ELEMENT ename( #PCDATA )>
<!ELEMENT name( #PCDATA )>
<!ELEMENT day( #PCDATA )>
<!ELEMENT month( #PCDATA )>
<!ELEMENT year( #PCDATA )>
<!ELEMENT type( #PCDATA )>
<!ELEMENT city( #PCDATA )>

] >

10.3 Code:

/db/emp/skills/type
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<bank>
<account account-number=“A-101” branch-name=“Downtown”

balance=“500”>
</account>
<account account-number=“A-102” branch-name=“Perryridge”

balance=“400”>
</account>
<account account-number=“A-201” branch-name=“Brighton”

balance=“900”>
</account>
<customer customer-name=“Johnson” customer-street=“Alma”

customer-city=“Palo Alto”>
</customer>
<customer customer-name=“Hayes” customer-street=“Main”

customer-city=“Harrison”>
</customer>
<depositor account-number=“A-101” customer-name=“Johnson”>
</depositor>
<depositor account-number=“A-201” customer-name=“Johnson”>
</depositor>
<depositor account-number=“A-102” customer-name=“Hayes”>
</depositor>

</bank>

Figure 10.1 XML representation.

<!DOCTYPE bank [
<!ELEMENT account >
<!ATTLIST account

account-number ID #REQUIRED
branch-name CDATA #REQUIRED
balance CDATA #REQUIRED >

<!ELEMENT customer >
<!ATTLIST customer

customer-name ID #REQUIRED
customer-street CDATA #REQUIRED
customer-street CDATA #REQUIRED >

<!ELEMENT depositor >
<!ATTLIST depositor

account-number IDREF #REQUIRED
customer-name IDREF #REQUIRED >

] >

Figure 10.2 The DTD for the bank.
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10.4 Query:

for $b in distinct (/bank/account/branch-name)
return
<branch-total>

<branch-name> $b/text() </branch-name>
let $s := sum (/bank/account[branch-name=$b]/balance)
return <total-balance> $s </total-balance>

</branch-total>

10.5 Query:

<lojoin>
for $b in /bank/account,

$c in /bank/customer,
$d in /bank/depositor

where $a/account-number = $d/account-number
and $c/customer-name = $d/customer-name

return <cust-acct> $c $a </cust-acct>
|
for $c in /bank/customer,
where every $d in /bank/depositor satisfies
(not ($c/customer-name=$d/customer-name))
return <cust-acct> $c </cust-acct>
</lojoin>

10.6 The answer in XQuery is

<bank-2>
for $c in /bank/customer
return

<customer>
<customer-name> $c/* </customer-name>
for $a in $c/id(@accounts)
return $a

</customer>
</bank-2>

10.7 Realtion schema:

book (bid, title, year, publisher, place)
article (artid, title, journal, year, number, volume, pages)
book author (bid, first name,last name, order)
article author (artid, first name,last name, order)

10.8 The answer is shwn in Figure 10.3.
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nodes(1,element,bank,–)
nodes(2,element,account,–)
nodes(3,element,account,–)
nodes(4,element,account,–)
nodes(5,element,customer,–)
nodes(6,element,customer,–)
nodes(7,element,depositor,–)
nodes(8,element,depositor,–)
nodes(9,element,depositor,–)
child(2,1) child(3,1) child(4,1)
child(5,1) child(6,1)
child(7,1) child(8,1) child(9,1)
nodes(10,element,account-number,A-101)
nodes(11,element,branch-name,Downtown)
nodes(12,element,balance,500)
child(10,2) child(11,2) child(12,2)
nodes(13,element,account-number,A-102)
nodes(14,element,branch-name,Perryridge)
nodes(15,element,balance,400)
child(13,3) child(14,3) child(15,3)
nodes(16,element,account-number,A-201)
nodes(17,element,branch-name,Brighton)
nodes(18,element,balance,900)
child(16,4) child(17,4) child(18,4)
nodes(19,element,customer-name,Johnson)
nodes(20,element,customer-street,Alma)
nodes(21,element,customer-city,Palo Alto)
child(19,5) child(20,5) child(21,5)
nodes(22,element,customer-name,Hayes)
nodes(23,element,customer-street,Main)
nodes(24,element,customer-city,Harrison)
child(22,6) child(23,6) child(24,6)
nodes(25,element,account-number,A-101)
nodes(26,element,customer-name,Johnson)
child(25,7) child(26,7)
nodes(27,element,account-number,A-201)
nodes(28,element,customer-name,Johnson)
child(27,8) child(28,8)
nodes(29,element,account-number,A-102)
nodes(30,element,customer-name,Hayes)
child(29,9) child(30,9)

Figure 10.3 Relational Representation of XML Data as Trees.
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10.9 a. The answer is shown in Figure 10.4.
b. Show how to map this DTD to a relational schema.

part(partid,name)
subpartinfo(partid, subpartid, qty)

Attributes partid and subpartid of subpartinfo are foreign keys to part.
c. No answer
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<parts>
<part>

<name> bicycle </name>
<subpartinfo>

<part>
<name> wheel </name>
<subpartinfo>

<part>
<name> rim </name>

</part>
<qty> 1 </qty>

</subpartinfo>
<subpartinfo>

<part>
<name> spokes </name>

</part>
<qty> 40 </qty>

</subpartinfo>
<subpartinfo>

<part>
<name> tire </name>

</part>
<qty> 1 </qty>

</subpartinfo>
</part>
<qty> 2 </qty>

</subpartinfo>
<subpartinfo>

<part>
<name> brake </name>

</part>
<qty> 2 </qty>

</subpartinfo>
<subpartinfo>

<part>
<name> gear </name>

</part>
<qty> 3 </qty>

</subpartinfo>
<subpartinfo>

<part>
<name> frame </name>

</part>
<qty> 1 </qty>

</subpartinfo>
</part>

</parts>

Figure 10.4 Example Parts Data in XML.
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Storage and File Structure

Solutions to Practice Exercises

11.1 This arrangement has the problem that Pi and B4i−3 are on the same disk. So
if that disk fails, reconstruction of B4i−3 is not possible, since data and parity
are both lost.

11.2 a. To ensure atomicity, a block write operation is carried out as follows:
i. Write the information onto the first physical block.

ii. When the first write completes successfully, write the same information
onto the second physical block.

iii. The output is declared completed only after the second write completes
successfully.

During recovery, each pair of physical blocks is examined. If both are
identical and there is no detectable partial-write, then no further actions
are necessary. If one block has been partially rewritten, then we replace its
contents with the contents of the other block. If there has been no partial-
write, but they differ in content, then we replace the contents of the first
block with the contents of the second, or vice versa. This recovery proce-
dure ensures that a write to stable storage either succeeds completely (that
is, updates both copies) or results in no change.

The requirement of comparing every corresponding pair of blocks dur-
ing recovery is expensive to meet. We can reduce the cost greatly by keep-
ing track of block writes that are in progress, using a small amount of non-
volatile RAM. On recovery, only blocks for which writes were in progress
need to be compared.

b. The idea is similar here. For any block write, the information block is
written first followed by the corresponding parity block. At the time of
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recovery, each set consisting of the nth block of each of the disks is con-
sidered. If none of the blocks in the set have been partially-written, and
the parity block contents are consistent with the contents of the informa-
tion blocks, then no further action need be taken. If any block has been
partially-written, it’s contents are reconstructed using the other blocks. If
no block has been partially-written, but the parity block contents do not
agree with the information block contents, the parity block’s contents are
reconstructed.

11.3 a. MRU is preferable to LRU where R1 � R2 is computed by using a nested-
loop processing strategy where each tuple in R2 must be compared to each
block in R1. After the first tuple of R2 is processed, the next needed block
is the first one in R1. However, since it is the least recently used, the LRU
buffer management strategy would replace that block if a new block was
needed by the system.

b. LRU is preferable to MRU where R1 � R2 is computed by sorting the rela-
tions by join values and then comparing the values by proceeding through
the relations. Due to duplicate join values, it may be necessary to “back-
up” in one of the relations. This “backing-up” could cross a block bound-
ary into the most recently used block, which would have been replaced by
a system using MRU buffer management, if a new block was needed.

Under MRU, some unused blocks may remain in memory forever. In
practice, MRU can be used only in special situations like that of the nested-
loop strategy discussed in example 0.a

11.4 a. Although moving record 6 to the space for 5, and moving record 7 to the
space for 6, is the most straightforward approach, it requires moving the
most records, and involves the most accesses.

b. Moving record 7 to the space for 5 moves fewer records, but destroys any
ordering in the file.

c. Marking the space for 5 as deleted preserves ordering and moves no records,
but requires additional overhead to keep track of all of the free space in the
file. This method may lead to too many “holes” in the file, which if not
compacted from time to time, will affect performance because of reduced
availability of contiguous free records.
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11.5 (We use “↑ i” to denote a pointer to record “i”.)
The original file of Figure 11.8.

header
400

Mianus 700
Downtown 500

900

Downtown 600

A-102

A-215
A-101

A-201

A-110
A-218 700

Perryridge

Perryridge

Perryridge

record 0
record 1

record 3
record 4
record 5
record 6
record 7
record 8

record 2

1

4

6

a. The file after insert (Brighton, A-323, 1600).

header
record 0 Perryridge
record 1 Brighton
record 2 Mianus
record 3 Downtown
record 4
record 5 Perryridge
record 6
record 7 Downtown
record 8 Perryridge

A-102
A-323
A-215
A-101

A-201

A-110
A-218

400
1600
700
500

900

600
700

4

6

b. The file after delete record 2.

header 2
record 0 Perryridge
record 1 Brighton
record 2 4
record 3 Downtown
record 4 6
record 5 Perryridge
record 6
record 7 Downtown
record 8 Perryridge

A-102
A-323

A-101

A-201

A-110
A-218

400
1600

500

900

600
700

The free record chain could have alternatively been from the header to 4,
from 4 to 2, and finally from 2 to 6.
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c. The file after insert (Brighton, A-626, 2000).

header
record 0 Perryridge 400
record 1 Brighton 1600
record 2 Brighton 2000
record 3 Downtown 500
record 4
record 5 Perryridge 900
record 6
record 7 Downtown 600
record 8 Perryridge

A-102
A-323
A-626
A-101

A-201

A-110
A-218 700

4

6

11.6 Instance of relations:

course relation
course_name room instructor

Pascal CS-101 Calvin, B c1
C CS-102 Calvin, B c2

Lisp CS-102 Kess, J c3

course_name student_name grade
Pascal Carper, D A
Pascal Merrick, L A
Pascal Mitchell, N B
Pascal Bliss, A C
Pascal Hames, G C

C Nile, M A
C Mitchell, N B
C Carper, D A
C Hurly, I B
C Hames, G A

Lisp Bliss, A C
Lisp Hurly, I B
Lisp Nile, M D
Lisp Stars, R A
Lisp Carper, D A

Block 0 contains: c1, e1, e2, e3, e4, and e5

Block 1 contains: c2, e6, e7, e8, e9 and e10

Block 2 contains: c3, e11, e12, e13, e14, and e15
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11.7 a. Everytime a record is inserted/deleted, check if the usage of the block has
changed levels. In that case, update the corrosponding bits. Note that we
don’t need to access the bitmaps at all unless the usage crosses a boundary,
so in most of the cases there is no overhead.

b. When free space for a large record or a set of records is sought, then mul-
tiple free list entries may have to be scanned before finding a proper sized
one, so overheads are much higher. With bitmaps, one page of bitmap can
store free info for many pages, so I/O spent for finding free space is mini-
mal. Similarly, when a whole block or a large part of it is deleted, bitmap
technique is more convenient for updating free space information.
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Indexing and Hashing

Solutions to Practice Exercises

12.1 Reasons for not keeping several search indices include:
a. Every index requires additional CPU time and disk I/O overhead during

inserts and deletions.
b. Indices on non-primary keys might have to be changed on updates, al-

though an index on the primary key might not (this is because updates
typically do not modify the primary key attributes).

c. Each extra index requires additional storage space.
d. For queries which involve conditions on several search keys, efficiency

might not be bad even if only some of the keys have indices on them.
Therefore database performance is improved less by adding indices when
many indices already exist.

12.2 In general, it is not possible to have two primary indices on the same relation
for different keys because the tuples in a relation would have to be stored in
different order to have same values stored together. We could accomplish this
by storing the relation twice and duplicating all values, but for a centralized
system, this is not efficient.
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12.3 The following were generated by inserting values into the B+-tree in ascending
order. A node (other than the root) was never allowed to have fewer than �n/2�
values/pointers.

a.

5 7 11 17 19 23 29 3132

29

19

115

b.

7 19

2 3 5 7 11 17 19 23 29 31

c.

11

11 17 19 23 29 312 3 5 7

12.4 • With structure 12.3.a:
Insert 9:

19

5 119 29

2 3 5 7 11 17 19 23 29 31 

Insert 10:

19

5 9 11 29

2 3 5 7 10 11 17 19 23 29 31 
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Insert 8:

19

5 9 11 29

2 3 5 7 10 11 17 19 23 29 31 

Delete 23:

11

195 9

2 3 5 7 8 9 10 11 17 19 29 31

Delete 19:

11

5 9 29

2 3 5 7 8 9 10 11 17 29 31

• With structure 12.3.b:
Insert 9:

2 3 5

7

7 9 11 17 19 23 29 31

19

Insert 10:

2 3 5

7 19

97 10 11 17 19 23 29 31
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Insert 8:

7 10 19

2 3 5 7 8 9 10 11 17 9 23 29 31

Delete 23:

7 10 19

2 3 5 7 8 9 10 1711 19 29 31

Delete 19:

10

10 11 17 3129

7

7 8 92 3 5

• With structure 12.3.c:
Insert 9:

11

2 3 5 7 9 11 17 19 23 29 31

Insert 10:

11

2 3 5 7 9 10 11 17 19 23 29 31

Insert 8:

11

2 3 5 7 8 9 10 11 17 19 23 29 31

Delete 23:

11

2 3 5 7 8 9 10 11 17 19 29 31
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Delete 19:

11

2 3 5 7 8 9 10 11 17 29 31

12.5 If there are K search-key values and m− 1 siblings are involved in the redistri-
bution, the expected height of the tree is: log�(m−1)n/m�(K)

12.6 The algorithm for insertion into a B-tree is:
Locate the leaf node into which the new key-pointer pair should be inserted.

If there is space remaining in that leaf node, perform the insertion at the correct
location, and the task is over. Otherwise insert the key-pointer pair conceptu-
ally into the correct location in the leaf node, and then split it along the middle.
The middle key-pointer pair does not go into either of the resultant nodes of
the split operation. Instead it is inserted into the parent node, along with the
tree pointer to the new child. If there is no space in the parent, a similar proce-
dure is repeated.

The deletion algorithm is:
Locate the key value to be deleted, in the B-tree.

a. If it is found in a leaf node, delete the key-pointer pair, and the record
from the file. If the leaf node contains less than �n/2�− 1 entries as a result
of this deletion, it is either merged with its siblings, or some entries are
redistributed to it. Merging would imply a deletion, whereas redistribution
would imply change(s) in the parent node’s entries. The deletions may
ripple upto the root of the B-tree.

b. If the key value is found in an internal node of the B-tree, replace it and
its record pointer by the smallest key value in the subtree immediately to
its right and the corresponding record pointer. Delete the actual record in
the database file. Then delete that smallest key value-pointer pair from the
subtree. This deletion may cause further rippling deletions till the root of
the B-tree.

Below are the B-trees we will get after insertion of the given key values.
We assume that leaf and non-leaf nodes hold the same number of search key
values.
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a.

2 3 7

5

11 19

17 29

23 31

b.

7 23

2 3 5 11 17 19 29 31

c.

11

2 3 5 7 17 2319 29 31



Exercises 59

12.7 Extendable hash structure

000 

001 

010 

011 

100

101 

110 

111

3 3

2

2

2

3

17

11

29

23
31

19

2

3

5

7

12.8 a. Delete 11: From the answer to Exercise 12.7, change the third bucket to:

3

19
3

At this stage, it is possible to coalesce the second and third buckets. Then it
is enough if the bucket address table has just four entries instead of eight.
For the purpose of this answer, we do not do the coalescing.

b. Delete 31: From the answer to 12.7, change the last bucket to:

2

23
7

c. Insert 1: From the answer to 12.7, change the first bucket to:

2

17
1

d. Insert 15: From the answer to 12.7, change the last bucket to:
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2

15
23

7

12.9 Let i denote the number of bits of the hash value used in the hash table. Let
bsize denote the maximum capacity of each bucket.

delete(value Kl)
begin

j = first i high-order bits of h(Kl);
delete value Kl from bucket j;
coalesce(bucket j);

end

coalesce(bucket j)
begin

ij = bits used in bucket j;
k = any bucket with first (ij − 1) bits same as that

of bucket j while the bit ij is reversed;
ik = bits used in bucket k;
if(ij �= ik)

return; /* buckets cannot be merged */
if(entries in j + entries in k > bsize)

return; /* buckets cannot be merged */
move entries of bucket k into bucket j;

decrease the value of ij by 1;
make all the bucket-address-table entries,
which pointed to bucket k, point to j;

coalesce(bucket j);
end

Note that we can only merge two buckets at a time. The common hash prefix
of the resultant bucket will have length one less than the two buckets merged.
Hence we look at the buddy bucket of bucket j differing from it only at the last
bit. If the common hash prefix of this bucket is not ij , then this implies that the
buddy bucket has been further split and merge is not possible.

When merge is successful, further merging may be possible, which is han-
dled by a recursive call to coalesce at the end of the function.

12.10 If the hash table is currently using i bits of the hash value, then maintain a
count of buckets for which the length of common hash prefix is exactly i.

Consider a bucket j with length of common hash prefix ij . If the bucket is
being split, and ij is equal to i, then reset the count to 1. If the bucket is being
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split and ij is one less that i, then increase the count by 1. It the bucket if being
coalesced, and ij is equal to i then decrease the count by 1. If the count becomes
0, then the bucket address table can be reduced in size at that point.

However, note that if the bucket address table is not reduced at that point,
then the count has no significance afterwards. If we want to postpone the re-
duction, we have to keep an array of counts, i.e. a count for each value of com-
mon hash prefix. The array has to be updated in a similar fashion. The bucket
address table can be reduced if the ith entry of the array is 0, where i is the
number of bits the table is using. Since bucket table reduction is an expensive
operation, it is not always advisable to reduce the table. It should be reduced
only when sufficient number of entries at the end of count array become 0.

12.11 We reproduce the account relation of Figure 12.25 below.

A-217 Brighton 750
A-101 Downtown 500
A-1 10 Downtown 600
A-215 Mianus 700
A-102 Perryridge 400
A-201 Perryridge 900
A-218 Perryridge 700
A-222 Redwood 700
A-305 Round Hill 350

Bitmaps for branch name

Brighton 1 0 0 0 0 0 0 0 0
Downtown 0 1 1 0 0 0 0 0 0
Mianus 0 0 0 1 0 0 0 0 0
Perryridge 0 0 0 0 1 1 1 0 0
Redwood 0 0 0 0 0 0 0 1 0
Round hill 0 0 0 0 0 0 0 0 1

Bitmaps for balance

L1 0 0 0 0 0 0 0 0 0
L2 0 0 0 0 1 0 0 0 1
L3 0 1 1 1 0 0 1 1 0
L4 1 0 0 0 0 1 0 0 0

where, level L1 is below 250, level L2 is from 250 to below 500, L3 from 500 to
below 750 and level L4 is above 750.
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To find all accounts in Downtown with a balance of 500 or more, we find the
union of bitmaps for levels L3 and L4 and then intersect it with the bitmap for
Downtown.

Downtown 0 1 1 0 0 0 0 0 0
L3 0 1 1 1 0 0 1 1 0
L4 1 0 0 0 0 1 0 0 0
L3 ∪ L4 1 1 1 1 0 1 1 1 0
Downtown 0 1 1 0 0 0 0 0 0
Downtown ∩(L3 ∪ L4) 0 1 1 0 0 0 0 0 0

Thus, the required tuples are A-101 and A-110.

12.12 No answer
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Query Processing

Solutions to Practice Exercises

13.1 Query:

ΠT.branch name((Πbranch name, assets(ρT (branch))) �T.assets>S.assets

(Πassets (σ(branch city = ′Brooklyn′)(ρS(branch)))))

This expression performs the theta join on the smallest amount of data possi-
ble. It does this by restricting the right hand side operand of the join to only
those branches in Brooklyn, and also eliminating the unneeded attributes from
both the operands.

13.2 We will refer to the tuples (kangaroo, 17) through (baboon, 12) using tuple
numbers t1 through t12. We refer to the jth run used by the ith pass, as rij . The
initial sorted runs have three blocks each. They are:

r11 = {t3, t1, t2}
r12 = {t6, t5, t4}
r13 = {t9, t7, t8}
r14 = {t12, t11, t10}

Each pass merges three runs. Therefore the runs after the end of the first pass
are:

r21 = {t3, t1, t6, t9, t5, t2, t7, t4, t8}
r22 = {t12, t11, t10}
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At the end of the second pass, the tuples are completely sorted into one run:

r31 = {t12, t3, t11, t10, t1, t6, t9, t5, t2, t7, t4, t8}

13.3 r1 needs 800 blocks, and r2 needs 1500 blocks. Let us assume M pages of mem-
ory. If M > 800, the join can easily be done in 1500 + 800 disk accesses, using
even plain nested-loop join. So we consider only the case where M ≤ 800
pages.

a. Nested-loop join:
Using r1 as the outer relation we need 20000∗1500+800 = 30, 000, 800

disk accesses, if r2 is the outer relation we need 45000 ∗ 800 + 1500 =
36, 001, 500 disk accesses.

b. Block nested-loop join:
If r1 is the outer relation, we need � 800

M−1� ∗ 1500 + 800 disk accesses, if
r2 is the outer relation we need � 1500

M−1� ∗ 800 + 1500 disk accesses.

c. Merge-join:
Assuming that r1 and r2 are not initially sorted on the join key, the total

sorting cost inclusive of the output is Bs = 1500(2�logM−1(1500/M)� +
2) + 800(2�logM−1(800/M)� + 2) disk accesses. Assuming all tuples with
the same value for the join attributes fit in memory, the total cost is Bs +
1500 + 800 disk accesses.

d. Hash-join:
We assume no overflow occurs. Since r1 is smaller, we use it as the build

relation and r2 as the probe relation. If M > 800/M , i.e. no need for recur-
sive partitioning, then the cost is 3(1500 + 800) = 6900 disk accesses, else
the cost is 2(1500 + 800)�logM−1(800) − 1� + 1500 + 800 disk accesses.

13.4 If there are multiple tuples in the inner relation with the same value for the
join attributes, we may have to access that many blocks of the inner relation
for each tuple of the outer relation. That is why it is inefficient. To reduce this
cost we can perform a join of the outer relation tuples with just the secondary
index leaf entries, postponing the inner relation tuple retrieval. The result file
obtained is then sorted on the inner relation addresses, allowing an efficient
physical order scan to complete the join.

Hybrid merge–join requires the outer relation to be sorted. The above algo-
rithm does not have this requirement, but for each tuple in the outer relation it
needs to perform an index lookup on the inner relation. If the outer relation is
much larger than the inner relation, this index lookup cost will be less than the
sorting cost, thus this algorithm will be more efficient.

13.5 We can store the entire smaller relation in memory, read the larger relation
block by block and perform nested loop join using the larger one as the outer
relation. The number of I/O operations is equal to br+bs, and memory require-
ment is min(br, bs) + 2 pages.
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13.6 a. Use the index to locate the first tuple whose branch city field has value
“Brooklyn”. From this tuple, follow the pointer chains till the end, retriev-
ing all the tuples.

b. For this query, the index serves no purpose. We can scan the file sequen-
tially and select all tuples whose branch city field is anything other than
“Brooklyn”.

c. This query is equivalent to the query

σ(branch city≥′Brooklyn′ ∧ assets<5000)(branch)

Using the branch-city index, we can retrieve all tuples with branch-city value
greater than or equal to “Brooklyn” by following the pointer chains from
the first “Brooklyn” tuple. We also apply the additional criteria of assets <
5000 on every tuple.

13.7 Let outer be the iterator which returns successive tuples from the pipelined
outer relation. Let inner be the iterator which returns successive tuples of the in-
ner relation having a given value at the join attributes. The inner iterator returns
these tuples by performing an index lookup. The functions IndexedNLJoin::open,
IndexedNLJoin::close and IndexedNLJoin::next to implement the indexed nested-
loop join iterator are given below. The two iterators outer and inner, the value
of the last read outer relation tuple tr and a flag doner indicating whether the
end of the outer relation scan has been reached are the state information which
need to be remembered by IndexedNLJoin between calls.

IndexedNLJoin::open()
begin

outer.open();
inner.open();
doner := false;
if(outer.next() �= false)

move tuple from outer’s output buffer to tr;
else

doner := true;
end

IndexedNLJoin::close()
begin

outer.close();
inner.close();

end
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boolean IndexedNLJoin::next()
begin

while(¬doner)
begin

if(inner.next(tr[JoinAttrs]) �= false)
begin

move tuple from inner’s output buffer to ts;
compute tr � ts and place it in output buffer;
return true;

end
else

if(outer.next() �= false)
begin

move tuple from outer’s output buffer to tr;
rewind inner to first tuple of s;

end
else

doner := true;
end
return false;

end

13.8 Suppose r(T ∪ S) and s(S) be two relations and r ÷ s has to be computed.
For sorting based algorithm, sort relation s on S. Sort relation r on (T, S).

Now, start scanning r and look at the T attribute values of the first tuple. Scan r
till tuples have same value of T . Also scan s simultaneously and check whether
every tuple of s also occurs as the S attribute of r, in a fashion similar to merge
join. If this is the case, output that value of T and proceed with the next value of
T . Relation s may have to be scanned multiple times but r will only be scanned
once. Total disk accesses, after sorting both the relations, will be |r| + N ∗ |s|,
where N is the number of distinct values of T in r.

We assume that for any value of T , all tuples in r with that T value fit in
memory, and consider the general case at the end. Partition the relation r on
attributes in T such that each partition fits in memory (always possible because
of our assumption). Consider partitions one at a time. Build a hash table on the
tuples, at the same time collecting all distinct T values in a separate hash table.
For each value of T , Now, for each value VT of T , each value s of S, probe the
hash table on (VT , s). If any of the values is absent, discard the value VT , else
output the value VT .

In the case that not all r tuples with one value for T fit in memory, partition r
and s on the S attributes such that the condition is satisfied, run the algorithm
on each corresponding pair of partitions ri and si. Output the intersection of
the T values generated in each partition.
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13.9 Seek overhead is reduced, but the the number of runs that can be merged in a
pass decreases potentially leading to more passes Should choose a value of bb

that minimizes overall cost.
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Query Optimization

Solutions to Practice Exercises

14.1 a. E1 �θ (E2 − E3) = (E1 �θ E2 − E1 �θ E3).
Let us rename (E1 �θ (E2−E3)) as R1, (E1 �θ E2) as R2 and (E1 �θ E3)

as R3. It is clear that if a tuple t belongs to R1, it will also belong to R2. If
a tuple t belongs to R3, t[E3’s attributes] will belong to E3, hence t cannot
belong to R1. From these two we can say that

∀t, t ∈ R1 ⇒ t ∈ (R2 − R3)

It is clear that if a tuple t belongs to R2 − R3, then t[R2’s attributes] ∈ E2

and t[R2’s attributes] �∈ E3. Therefore:

∀t, t ∈ (R2 − R3) ⇒ t ∈ R1

The above two equations imply the given equivalence.
This equivalence is helpful because evaluation of the right hand side

join will produce many tuples which will finally be removed from the re-
sult. The left hand side expression can be evaluated more efficiently.

b. σθ( AGF (E)) = AGF (σθ(E)), where θ uses only attributes from A.
θ uses only attributes from A. Therefore if any tuple t in the output of

AGF (E) is filtered out by the selection of the left hand side, all the tuples in
E whose value in A is equal to t[A] are filtered out by the selection of the
right hand side. Therefore:

∀t, t �∈ σθ( AGF (E)) ⇒ t �∈ AGF (σθ(E))

Using similar reasoning, we can also conclude that

∀t, t �∈ AGF (σθ(E)) ⇒ t �∈ σθ( AGF (E))

The above two equations imply the given equivalence.
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This equivalence is helpful because evaluation of the right hand side
avoids performing the aggregation on groups which are anyway going to
be removed from the result. Thus the right hand side expression can be
evaluated more efficiently than the left hand side expression.

c. σθ(E1 � E2) = σθ(E1) � E2 where θ uses only attributes from E1.
θ uses only attributes from E1. Therefore if any tuple t in the output of

(E1 � E2) is filtered out by the selection of the left hand side, all the tuples
in E1 whose value is equal to t[E1] are filtered out by the selection of the
right hand side. Therefore:

∀t, t �∈ σθ(E1 � E2) ⇒ t �∈ σθ(E1) � E2

Using similar reasoning, we can also conclude that

∀t, t �∈ σθ(E1) � E2 ⇒ t �∈ σθ(E1 � E2)

The above two equations imply the given equivalence.
This equivalence is helpful because evaluation of the right hand side

avoids producing many output tuples which are anyway going to be re-
moved from the result. Thus the right hand side expression can be evalu-
ated more efficiently than the left hand side expression.

14.2 a. R = {(1, 2)}, S = {(1, 3)}
The result of the left hand side expression is {(1)}, whereas the result of

the right hand side expression is empty.
b. R = {(1, 2), (1, 5)}

The left hand side expression has an empty result, whereas the right
hand side one has the result {(1, 2)}.

c. Yes, on replacing the max by the min, the expressions will become equiv-
alent. Any tuple that the selection in the rhs eliminates would not pass the
selection on the lhs if it were the minimum value, and would be eliminated
anyway if it were not the minimum value.

d. R = {(1, 2)}, S = {(2, 3)}, T = {(1, 4)}. The left hand expression gives
{(1, 2, null, 4)} whereas the the right hand expression gives {(1, 2, 3, null)}.

e. Let R be of the schema (A, B) and S of (A, C). Let R = {(1, 2)}, S =
{(2, 3)} and let θ be the expression C = 1. The left side expression’s result
is empty, whereas the right side expression results in {(1, 2, null)}.

14.3 a. We define the multiset versions of the relational-algebra operators here.
Given multiset relations r1 and r2,

i. σ
Let there be c1 copies of tuple t1 in r1. If t1 satisfies the selection σθ,

then there are c1 copies of t1 in σθ(r1), otherwise there are none.
ii. Π

For each copy of tuple t1 in r1, there is a copy of tuple ΠA(t1) in
ΠA(r1), where ΠA(t1) denotes the projection of the single tuple t1.

iii. ×
If there are c1 copies of tuple t1 in r1 and c2 copies of tuple t2 in r2,

then there are c1 ∗ c2 copies of the tuple t1.t2 in r1 × r2.
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iv. �

The output will be the same as a cross product followed by a selec-
tion.

v. −
If there are c1 copies of tuple t in r1 and c2 copies of t in r2, then there

will be c1 − c2 copies of t in r1 − r2, provided that c1 − c2 is positive.
vi. ∪

If there are c1 copies of tuple t in r1 and c2 copies of t in r2, then there
will be c1 + c2 copies of t in r1 ∪ r2.

vii. ∩
If there are c1 copies of tuple t in r1 and c2 copies of t in r2, then there

will be min(c1, c2) copies of t in r1 ∩ r2.
b. All the equivalence rules 1 through 7.b of section 14.2.1 hold for the multi-

set version of the relational-algebra defined in the first part.
There exist equivalence rules which hold for the ordinary relational-

algebra, but do not hold for the multiset version. For example consider
the rule :-

A ∩ B = A ∪ B − (A − B) − (B − A)

This is clearly valid in plain relational-algebra. Consider a multiset in-
stance in which a tuple t occurs 4 times in A and 3 times in B. t will occur
3 times in the output of the left hand side expression, but 6 times in the
output of the right hand side expression. The reason for this rule to not
hold in the multiset version is the asymmetry in the semantics of multiset
union and intersection.

14.4 • The relation resulting from the join of r1, r2, and r3 will be the same no
matter which way we join them, due to the associative and commutative
properties of joins. So we will consider the size based on the strategy of
((r1 � r2) � r3). Joining r1 with r2 will yield a relation of at most 1000
tuples, since C is a key for r2. Likewise, joining that result with r3 will
yield a relation of at most 1000 tuples because E is a key for r3. Therefore
the final relation will have at most 1000 tuples.

• An efficient strategy for computing this join would be to create an index
on attribute C for relation r2 and on E for r3. Then for each tuple in r1, we
do the following:
a. Use the index for r2 to look up at most one tuple which matches the C

value of r1.
b. Use the created index on E to look up in r3 at most one tuple which

matches the unique value for E in r2.

14.5 The estimated size of the relation can be determined by calculating the average
number of tuples which would be joined with each tuple of the second relation.
In this case, for each tuple in r1, 1500/V (C, r2) = 15/11 tuples (on the average)
of r2 would join with it. The intermediate relation would have 15000/11 tuples.
This relation is joined with r3 to yield a result of approximately 10,227 tuples
(15000/11 × 750/100 = 10227). A good strategy should join r1 and r2 first, since
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the intermediate relation is about the same size as r1 or r2. Then r3 is joined to
this result.

14.6 a. Use the index to locate the first tuple whose branch city field has value
“Brooklyn”. From this tuple, follow the pointer chains till the end, retriev-
ing all the tuples.

b. For this query, the index serves no purpose. We can scan the file sequen-
tially and select all tuples whose branch city field is anything other than
“Brooklyn”.

c. This query is equivalent to the query:
σ(branch city≥’Brooklyn’ ∧ assets<5000)(branch).

Using the branch city index, we can retrieve all tuples with branch city value
greater than or equal to “Brooklyn” by following the pointer chains from
the first “Brooklyn” tuple. We also apply the additional criteria of assets <
5000 on every tuple.

14.7 Each join order is a complete binary tree (every non-leaf node has exactly two
children) with the relations as the leaves. The number of different complete
binary trees with n leaf nodes is 1

n

(2(n−1)
(n−1)

)
. This is because there is a bijection

between the number of complete binary trees with n leaves and number of
binary trees with n−1 nodes. Any complete binary tree with n leaves has n−1
internal nodes. Removing all the leaf nodes, we get a binary tree with n − 1
nodes. Conversely, given any binary tree with n− 1 nodes, it can be converted
to a complete binary tree by adding n leaves in a unique way. The number
of binary trees with n − 1 nodes is given by 1

n

(2(n−1)
(n−1)

)
, known as the Catalan

number. Multiplying this by n! for the number of permutations of the n leaves,
we get the desired result.

14.8 Consider the dynamic programming algorithm given in Section 14.4.2. For
each subset having k + 1 relations, the optimal join order can be computed
in time 2k+1. That is because for one particular pair of subsets A and B, we
need constant time and there are at most 2k+1 − 2 different subsets that A can
denote. Thus, over all the

(
n

k+1

)
subsets of size k+1, this cost is

(
n

k+1

)
2k+1. Sum-

ming over all k from 1 to n− 1 gives the binomial expansion of ((1 + x)n − x)
with x = 2. Thus the total cost is less than 3n.

14.9 The derivation of time taken is similar to the general case, except that instead
of considering 2k+1 − 2 subsets of size less than or equal to k for A, we only
need to consider k+1 subsets of size exactly equal to k. That is because the right
hand operand of the topmost join has to be a single relation. Therefore the total
cost for finding the best join order for all subsets of size k + 1 is

(
n

k+1

)
(k + 1),

which is equal to n
(
n−1

k

)
. Summing over all k from 1 to n−1 using the binomial

expansion of (1 + x)n−1 with x = 1, gives a total cost of less than n2n−1.

14.10 a. The nested query is as follows:
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select S.acount number
from account S
where S.branch name like ’B%’ and

S.balance =
(select max(T.balance)
from account T
where T.branch name = S.branch name)

b. The decorrelated query is as follows:

create table t1 as
select branch name, max(balance)
from account
group by branch name

select account number
from account, t1
where account.branch name like ’B%’ and

account.branch name = t1.branch name and
account.balance = t1.balance

c. In general, consider the queries of the form:

select · · ·
from L1

where P1 and
A1 op
(select f(A2)
from L2

where P2)
where, f is some aggregate function on attributes A2, and op is some boolean
binary operator. It can be rewritten as

create table t1 as
select f(A2),V
from L2

where P 1
2

group by V
select · · ·
from L1, t1
where P1 and P 2

2 and
A1 op t1.A2

where P 1
2 contains predicates in P2 without selections involving correla-

tion variables, and P 2
2 introduces the selections involving the correlation

variables. V contains all the attributes that are used in the selections in-
volving correlation variables in the nested query.
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Transactions

Solutions to Practice Exercises

15.1 Even in this case the recovery manager is needed to perform roll-back of aborted
transactions.

15.2 There are several steps in the creation of a file. A storage area is assigned to the
file in the file system, a unique i-number is given to the file and an i-node entry
is inserted into the i-list. Deletion of file involves exactly opposite steps.

For the file system user in UNIX, durability is important for obvious rea-
sons, but atomicity is not relevant generally as the file system doesn’t support
transactions. To the file system implementor though, many of the internal file
system actions need to have transaction semantics. All the steps involved in
creation/deletion of the file must be atomic, otherwise there will be unrefer-
enceable files or unusable areas in the file system.

15.3 Database systems usually perform crucial tasks whose effects need to be atomic
and durable, and whose outcome affects the real world in a permanent manner.
Examples of such tasks are monetary transactions, seat bookings etc. Hence
the ACID properties have to be ensured. In contrast, most users of file systems
would not be willing to pay the price (monetary, disk space, time) of support-
ing ACID properties.

15.4 If a transaction is very long or when it fetches data from a slow disk, it takes a
long time to complete. In absence of concurrency, other transactions will have
to wait for longer period of time. Average responce time will increase. Also
when the transaction is reading data from disk, CPU is idle. So resources are not
properly utilized. Hence concurrent execution becomes important in this case.
However, when the transactions are short or the data is available in memory,
these problems do not occur.
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15.5 Most of the concurrency control protocols (protocols for ensuring that only se-
rializable schedules are generated) used in practise are based on conflict serial-
izability—they actually permit only a subset of conflict serializable schedules.
The general form of view serializability is very expensive to test, and only a
very restricted form of it is used for concurrency control.

15.6 There is a serializable schedule corresponding to the precedence graph below,
since the graph is acyclic. A possible schedule is obtained by doing a topologi-
cal sort, that is, T1, T2, T3, T4, T5.

15.7 A cascadeless schedule is one where, for each pair of transactions Ti and Tj

such that Tj reads data items previously written by Ti, the commit operation
of Ti appears before the read operation of Tj . Cascadeless schedules are de-
sirable because the failure of a transaction does not lead to the aborting of any
other transaction. Of course this comes at the cost of less concurrency. If failures
occur rarely, so that we can pay the price of cascading aborts for the increased
concurrency, noncascadeless schedules might be desirable.
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Concurrency Control

Solutions to Practice Exercises

16.1 Suppose two-phase locking does not ensure serializability. Then there exists a
set of transactions T0, T1 ... Tn−1 which obey 2PL and which produce a non-
serializable schedule. A non-serializable schedule implies a cycle in the prece-
dence graph, and we shall show that 2PL cannot produce such cycles. Without
loss of generality, assume the following cycle exists in the precedence graph:
T0 → T1 → T2 → ... → Tn−1 → T0. Let αi be the time at which Ti obtains its last
lock (i.e. Ti’s lock point). Then for all transactions such that Ti → Tj , αi < αj .
Then for the cycle we have

α0 < α1 < α2 < ... < αn−1 < α0

Since α0 < α0 is a contradiction, no such cycle can exist. Hence 2PL cannot
produce non-serializable schedules. Because of the property that for all trans-
actions such that Ti → Tj , αi < αj , the lock point ordering of the transactions
is also a topological sort ordering of the precedence graph. Thus transactions
can be serialized according to their lock points.

16.2 a. Lock and unlock instructions:

T31: lock-S(A)
read(A)
lock-X(B)
read(B)
if A = 0
then B := B + 1
write(B)
unlock(A)
unlock(B)
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T32: lock-S(B)
read(B)
lock-X(A)
read(A)
if B = 0
then A := A + 1
write(A)
unlock(B)
unlock(A)

b. Execution of these transactions can result in deadlock. For example, con-
sider the following partial schedule:

T31 T32

lock-S(A)
lock-S(B)
read(B)

read(A)
lock-X (B)

lock-X (A)

The transactions are now deadlocked.

16.3 Rigorous two-phase locking has the advantages of strict 2PL. In addition it has
the property that for two conflicting transactions, their commit order is their
serializability order. In some systems users might expect this behavior.

16.4 The proof is in Buckley and Silberschatz, “Concurrency Control in Graph Pro-
tocols by Using Edge Locks,” Proc. ACM SIGACT-SIGMOD Symposium on the
Principles of Database Systems, 1984.

16.5 Consider the tree-structured database graph given below.

�A

�B

�C

Schedule possible under tree protocol but not under 2PL:
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T1 T2

lock (A)
lock (B)
unlock (A)

lock (A)
lock (C)
unlock (B)

lock (B)
unlock (A)
unlock (B)

unlock (C)

Schedule possible under 2PL but not under tree protocol:

T1 T2

lock (A)
lock (B)

lock (C)
unlock (B)

unlock (A)
unlock (C)

16.6 The proof is in Kedem and Silberschatz, “Locking Protocols: From Exclusive to
Shared Locks,” JACM Vol. 30, 4, 1983.

16.7 The proof is in Kedem and Silberschatz, “Controlling Concurrency Using Lock-
ing Protocols,” Proc. Annual IEEE Symposium on Foundations of Computer
Science, 1979.

16.8 The proof is in Kedem and Silberschatz, “Controlling Concurrency Using Lock-
ing Protocols,” Proc. Annual IEEE Symposium on Foundations of Computer
Science, 1979.

16.9 The access protection mechanism can be used to implement page level locking.
Consider reads first. A process is allowed to read a page only after it read-locks
the page. This is implemented by using mprotect to initially turn off read
permissions to all pages, for the process. When the process tries to access an
address in a page, a protection violation occurs. The handler associated with
protection violation then requests a read lock on the page, and after the lock
is acquired, it uses mprotect to allow read access to the page by the process,
and finally allows the process to continue. Write access is handled similarly.

16.10 The proof is in Korth, “Locking Primitives in a Database System,” JACM Vol.
30, 1983.

16.11 It would make no difference. The write protocol is such that the most recent
transaction to write an item is also the one with the largest timestamp to have
done so.
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16.12 If a transaction needs to access a large a set of items, multiple granularity lock-
ing requires fewer locks, whereas if only one item needs to be accessed, the
single lock granularity system allows this with just one lock. Because all the
desired data items are locked and unlocked together in the multiple granular-
ity scheme, the locking overhead is low, but concurrency is also reduced.

16.13 In the concurrency control scheme of Section 16.3 choosing Start(Ti) as the
timestamp of Ti gives a subset of the schedules allowed by choosing
Validation(Ti) as the timestamp. Using Start(Ti) means that whoever started
first must finish first. Clearly transactions could enter the validation phase
in the same order in which they began executing, but this is overly restric-
tive. Since choosing Validation(Ti) causes fewer nonconflicting transactions to
restart, it gives the better response times.

16.14 • Two-phase locking: Use for simple applications where a single granularity
is acceptable. If there are large read-only transactions, multiversion proto-
cols would do better. Also, if deadlocks must be avoided at all costs, the
tree protocol would be preferable.

• Two-phase locking with multiple granularity locking: Use for an appli-
cation mix where some applications access individual records and others
access whole relations or substantial parts thereof. The drawbacks of 2PL
mentioned above also apply to this one.

• The tree protocol: Use if all applications tend to access data items in an or-
der consistent with a particular partial order. This protocol is free of dead-
locks, but transactions will often have to lock unwanted nodes in order to
access the desired nodes.

• Timestamp ordering: Use if the application demands a concurrent execu-
tion that is equivalent to a particular serial ordering (say, the order of ar-
rival), rather than any serial ordering. But conflicts are handled by roll-back
of transactions rather than waiting, and schedules are not recoverable. To
make them recoverable, additional overheads and increased response time
have to be tolerated. Not suitable if there are long read-only transactions,
since they will starve. Deadlocks are absent.

• Validation: If the probability that two concurrently executing transactions
conflict is low, this protocol can be used advantageously to get better con-
currency and good response times with low overheads. Not suitable under
high contention, when a lot of wasted work will be done.

• Multiversion timestamp ordering: Use if timestamp ordering is appropri-
ate but it is desirable for read requests to never wait. Shares the other dis-
advantages of the timestamp ordering protocol.

• Multiversion two-phase locking: This protocol allows read-only transac-
tions to always commit without ever waiting. Update transactions follow
2PL, thus allowing recoverable schedules with conflicts solved by waiting
rather than roll-back. But the problem of deadlocks comes back, though
read-only transactions cannot get involved in them. Keeping multiple ver-
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sions adds space and time overheads though, therefore plain 2PL may be
preferable in low conflict situations.

16.15 A transaction waits on a. disk I/O and b. lock acquisition. Transactions gen-
erally wait on disk reads and not on disk writes as disk writes are handled
by the buffering mechanism in asynchronous fashion and transactions update
only the in-memory copy of the disk blocks.

The technique proposed essentially separates the waiting times into two
phases. The first phase – where transaction is executed without acquiring any
locks and without performing any writes to the database – accounts for almost
all the waiting time on disk I/O as it reads all the data blocks it needs from
disk if they are not already in memory. The second phase—the transaction re-
execution with strict two-phase locking—accounts for all the waiting time on
acquiring locks. The second phase may, though rarely, involve a small waiting
time on disk I/O if a disk block that the transaction needs is flushed to memory
(by buffer manager) before the second phase starts.

The technique may increase concurrency as transactions spend almost no
time on disk I/O with locks held and hence locks are held for shorter time.
In the first phase the transaction reads all the data items required—and not
already in memory—from disk. The locks are acquired in the second phase
and the transaction does almost no disk I/O in this phase. Thus the transaction
avoids spending time in disk I/O with locks held.

The technique may even increase disk throughput as the disk I/O is not
stalled for want of a lock. Consider the following scenario with strict two-
phase locking protocol: A transaction is waiting for a lock, the disk is idle and
there are some item to be read from disk. In such a situation disk bandwidth
is wasted. But in the proposed technique, the transaction will read all the re-
quired item from the disk without acquiring any lock and the disk bandwidth
may be properly utilized.

Note that the proposed technique is most useful if the computation involved
in the transactions is less and most of the time is spent in disk I/O and waiting
on locks, as is usually the case in disk-resident databases. If the transaction is
computation intensive, there may be wasted work. An optimization is to save
the updates of transactions in a temporary buffer, and instead of reexecuting
the transaction, to compare the data values of items when they are locked with
the values used earlier. If the two values are the same for all items, then the
buffered updates of the transaction are executed, instead of reexecuting the
entire transaction.

16.16 Consider two transactions T1 and T2 shown below.

T1 T2

write(p)
read(p)
read(q)

write(q)
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Let TS(T1) < TS(T2) and let the timestamp test at each operation except
write(q) be successful. When transaction T1 does the timestamp test for write(q)
it finds that TS(T1) < R-timestamp(q), since TS(T1) < TS(T2) and R-timestamp(q)
= TS(T2). Hence the writeoperation fails and transaction T1 rolls back. The cas-
cading results in transaction T2 also being rolled back as it uses the value for
item p that is written by transaction T1.

If this scenario is exactly repeated every time the transactions are restarted,
this could result in starvation of both transactions.

16.17 In the text, we considered two approaches to dealing with the phantom phe-
nomenon by means of locking. The coarser granularity approach obviously
works for timestamps as well. The B+-tree index based approach can be adapted
to timestamping by treating index buckets as data items with timestamps as-
sociated with them, and requiring that all read accesses use an index. We now
show that this simple method works. Suppose a transaction Ti wants to access
all tuples with a particular range of search-key values, using a
B+-tree index on that search-key. Ti will need to read all the buckets in that
index which have key values in that range. It can be seen that any delete or
insert of a tuple with a key-value in the same range will need to write one of
the index buckets read by Ti. Thus the logical conflict is converted to a conflict
on an index bucket, and the phantom phenomenon is avoided.

16.18 Note: The tree-protocol of Section 16.1.5 which is referred to in this question,
is different from the multigranularity protocol of Section 16.4 and the B+-tree
concurrency protocol of Section 16.9.

One strategy for early lock releasing is given here. Going down the tree from
the root, if the currently visited node’s child is not full, release locks held on
all nodes except the current node, request an X-lock on the child node, after
getting it release the lock on the current node, and then descend to the child.
On the other hand, if the child is full, retain all locks held, request an X-lock on
the child, and descend to it after getting the lock. On reaching the leaf node,
start the insertion procedure. This strategy results in holding locks only on the
full index tree nodes from the leaf upwards, until and including the first non-
full node.

An optimization to the above strategy is possible. Even if the current node’s
child is full, we can still release the locks on all nodes but the current one. But
after getting the X-lock on the child node, we split it right away. Releasing the
lock on the current node and retaining just the lock on the appropriate split
child, we descend into it making it the current node. With this optimization, at
any time at most two locks are held, of a parent and a child node.
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Recovery System

Solutions to Practice Exercises

17.1 • The recovery scheme using a log with deferred updates has the following
advantages over the recovery scheme with immediate updates:
a. The scheme is easier and simpler to implement since fewer operations

and routines are needed, i.e., no UNDO.
b. The scheme requires less overhead since no extra I/O operations need

to be done until commit time (log records can be kept in memory the
entire time).

c. Since the old values of data do not have to be present in the log-records,
this scheme requires less log storage space.

• The disadvantages of the deferred modification scheme are :
a. When a data item needs to accessed, the transaction can no longer di-

rectly read the correct page from the database buffer, because a previ-
ous write by the same transaction to the same data item may not have
been propagated to the database yet. It might have updated a local
copy of the data item and deferred the actual database modification.
Therefore finding the correct version of a data item becomes more ex-
pensive.

b. This scheme allows less concurrency than the recovery scheme with
immediate updates. This is because write-locks are held by transactions
till commit time.

c. For long transaction with many updates, the memory space occupied
by log records and local copies of data items may become too high.

17.2 The first phase of recovery is to undo the changes done by the failed transac-
tions, so that all data items which have been modified by them get back the
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values they had before the first of the failed transactions started. If several of
the failed transactions had modified the same data item, forward processing of
log-records for undo-list transactions would make the data item get the value
which it had before the last failed transaction to modify that data item started.
This is clearly wrong, and we can see that reverse prcessing gets us the desired
result.

The second phase of recovery is to redo the changes done by committed
transactons, so that all data items which have been modified by them are re-
stored to the value they had after the last of the committed transactions fin-
ished. It can be seen that only forward processing of log-records belonging to
redo-list transactions can guarantee this.

17.3 Interactive transactions are more difficult to recover from than batch transac-
tions because some actions may be irrevocable. For example, an output (write)
statement may have fired a missile, or caused a bank machine to give money to
a customer. The best way to deal with this is to try to do all output statements
at the end of the transaction. That way if the transaction aborts in the middle,
no harm will be have been done.

17.4 • Consider the a bank account A with balance $100. Consider two transac-
tions T1 and T2 each depositing $10 in the account. Thus the balance would
be $120 after both these transactions are executed. Let the transactions ex-
ecute in sequence: T1 first and then T2. The log records corresponding to
the updates of A by transactions T1 and T2 would be < T1, A, 100, 110 >
and < T2, A, 110, 120 > resp.

Say, we wish to undo transaction T1. The normal transaction undo mech-
anism will replaces the value in question—A in this example—by the old-
value field in the log record. Thus if we undo transaction T1 using the nor-
mal transaction undo mechanism the resulting balance would be $100 and
we would, in effect, undo both transactions, whereas we intend to undo
only transaction T1.

• Let the erroneous transaction be Te.
� Identify the latest checkpoint, say C, in the log before the log record

< Te, START>.
� Redo all log records starting from the checkpoint C till the log record <

Te, COMMIT>. Some transaction—apart from transaction Te —would
be active at the commit time of transaction Te. Let S1 be the set of such
transactions.

� Rollback Te and the transactions in the set S1.
� Scan the log further starting from the log record < Te, COMMIT> till

the end of the log. Note the transactions that were started after the
commit point of Te. Let the set of such transactions be S2. Re-execute
the transactions in set S1 and S2 logically.
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• Consider again an example from the first item. Let us assume that both
transactions are undone and the balance is reverted back to the original
value $100.

Now we wish to redo transaction T2. If we redo the log record < T2, A,
110, 120 > corresponding to transaction T2 the balance would become $120
and we would, in effect, redo both transactions, whereas we intend to redo
only transaction T2.

17.5 This is implemented by using mprotect to initially turn off access to all pages,
for the process. When the process tries to access an address in a page, a pro-
tection violation occurs. The handler accociated with protection violation then
requests a write lock on the page, and after the lock is acquired, it writes the
initial contents (before-image) of the page to the log. It then uses mprotect
to allow write access to the page by the process, and finally allows the process
to continue. When the transaction is ready to commit, and before it releases
the lock on the page, it writes the contents of the page (after-image) to the log.
These before- and after- images can be used for recovery after a crash.

This scheme can be optimized to not write the whole page to log for undo
logging, provided the program pins the page in memory.

17.6 We can maintain the LSNs of such pages in an array in a separate disk page.
The LSN entry of a page on the disk is the sequence number of the latest log
record reflected on the disk. In the normal case, as the LSN of a page resides in
the page itself, the page and its LSN are in consistent state. But in the modified
scheme as the LSN of a page resides in a separate page it may not be written to
the disk at a time when the actual page is written and thus the two may not be
in consistent state.

If a page is written to the disk before its LSN is updated on the disk and the
system crashes then, during recovery, the page LSN read from the LSN array
from the disk is older than the sequence number of the log record reflected
to the disk. Thus some updates on the page will be redone unnecessarily but
this is fine as updates are idempotent. But if the page LSN is written to the
disk to before the actual page is written and the system crashes then some of
the updates to the page may be lost. The sequence number of the log record
corresponding to the latest update to the page that made to the disk is older
than the page LSN in the LSN array and all updates to the page between the
two LSNs are lost.

Thus the LSN of a page should be written to the disk only after the page
has been written and; we can ensure this as follows: before writing a page
containing the LSN array to the disk, we should flush the corresponding pages
to the disk. (We can maintain the page LSN at the time of the last flush of each
page in the buffer separately, and avoid flushing pages that have been flushed
already.)
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Data Analysis and Mining

Solutions to Practice Exercises

18.1 query:

groupby rollup(a), rollup(b), rollup(c), rollup(d)

18.2 We assume that multiple students do not have the same marks since otherwise
the question is not deterministic; the query below deterministically returns all
students with the same marks as the n student, so it may return more than n
students.

select student, sum(marks) as total,
rank() over (order by (total) desc) as trank

from S
groupby student
having trank ≤ n

18.3 query:

select t1.account-number, t1.date-time, sum(t2.value)
from transaction as t1, transaction as t2
where t1.account-number = t2.account-number and

t2.date-time < t1.date-time
groupby t1.account-number, t1.date-time
order by t1.account-number, t1.date-time
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18.4 query:

(select color, size, sum(number)
from sales
groupby color, size

)
union
(select color, ’all’, sum(number)
from sales
groupby color

)
union
(select ’all’, size, sum(number)
from sales
groupby size

)
union
(select ’all’, ’all’, sum(number)
from sales

)

18.5 In a destination-driven architecture for gathering data, data transfers from the
data sources to the data-warehouse are based on demand from the warehouse,
whereas in a source-driven architecture, the transfers are initiated by each
source.

The benefits of a source-driven architecture are

• Data can be propagated to the destination as soon as it becomes available.
For a destination-driven architecture to collect data as soon as it is avail-
able, the warehouse would have to probe the sources frequently, leading
to a high overhead.

• The source does not have to keep historical information. As soon as data
is updated, the source can send an update message to the destination and
forget the history of the updates. In contrast, in a destination-driven archi-
tecture, each source has to maintain a history of data which have not yet
been collected by the data warehouse. Thus storage requirements at the
source are lower for a source-driven architecture.

On the other hand, a destination-driven architecture has the following ad-
vantages.

• In a source-driven architecture, the source has to be active and must han-
dle error conditions such as not being able to contact the warehouse for
some time. It is easier to implement passive sources, and a single active
warehouse. In a destination-driven architecure, each source is required to
provide only a basic functionality of executing queries.
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• The warehouse has more control on when to carry out data gathering ac-
tivities, and when to process user queries; it is not a good idea to perform
both simultaneously, since they may conflict on locks.

18.6 Consider the following pair of rules and their confidence levels :

No. Rule Conf.
1. ∀ persons P, 10000 < P.salary ≤ 20000 ⇒

P.credit = good
60%

2. ∀ persons P, 20000 < P.salary ≤ 30000 ⇒
P.credit = good

90%

The new rule has to be assigned a confidence-level which is between the
confidence-levels for rules 1 and 2. Replacing the original rules by the new
rule will result in a loss of confidence-level information for classifying persons,
since we cannot distinguish the confidence levels of perople earning between
10000 and 20000 from those of people earning between 20000 and 30000. There-
fore we can combine the two rules without loss of information only if their
confidences are the same.

18.7 query:

select store-id, city, state, country,
date, month, quarter, year,
sum(number), sum(price)

from sales, store, date
where sales.store-id = store.store-id and

sales.date = date.date
groupby rollup(country, state, city, store-id),

rollup(year, quarter, month, date)
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Information Retrieval

Solutions to Practice Exercises

19.1 We do not consider the questions containing neither of the keywords as their
relevance to the keywords is zero. The number of words in a question include
stop words. We use the equations given in Section 19.2.1 to compute relevance;
the log term in the equation is assumed to be to the base 2.

Q# #wo- # #“rela- “SQL” “relation relation” “SQL” “ ”
-rds “SQL” -tion” term freq. term freq. relv. relv. relv.

Tota

1 84 1 1 0.0170 0.0170 0.0002 0.0002 0.0004
4 22 0 1 0.0000 0.0641 0.0000 0.0029 0.0029
5 46 1 1 0.0310 0.0310 0.0006 0.0006 0.0013
6 22 1 0 0.0641 0.0000 0.0029 0.0000 0.0029
7 33 1 1 0.0430 0.0430 0.0013 0.0013 0.0026
8 32 1 3 0.0443 0.1292 0.0013 0.0040 0.0054
9 77 0 1 0.0000 0.0186 0.0000 0.0002 0.0002

14 30 1 0 0.0473 0.0000 0.0015 0.0000 0.0015
15 26 1 1 0.0544 0.0544 0.0020 0.0020 0.0041

19.2 Let S be a set of n keywords. An algorithm to find all documents that contain
at least k of these keywords is given below :

This algorithm calculates a reference count for each document identifier. A
reference count of i for a document identifier d means that at least i of the key-
words in S occur in the document identified by d. The algorithm maintains a
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list of records, each having two fields – a document identifier, and the refer-
ence count for this identifier. This list is maintained sorted on the document
identifier field.

initialize the list L to the empty list;
for (each keyword c in S) do
begin

D := the list of documents identifiers corresponding to c;
for (each document identifier d in D) do

if (a record R with document identifier as d is on list L) then
R.reference count := R.reference count + 1;

else begin
make a new record R;
R.document id := d;
R.reference count := 1;
add R to L;

end;
end;
for (each record R in L) do

if (R.reference count >= k) then
output R;

Note that execution of the second for statement causes the list D to “merge”
with the list L. Since the lists L and D are sorted, the time taken for this merge
is proportional to the sum of the lengths of the two lists. Thus the algorithm
runs in time (at most) proportional to n times the sum total of the number of
document identifiers corresponding to each keyword in S.

19.3 No answer

19.4 No answer

19.5 No answer
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DatabaseSystemArchitectures

Solutions to Practice Exercises

20.1 The drawbacks would be that two interprocess messages would be required
to acquire locks, one for the request and one to confirm grant. Interprocess
communication is much more expensive than memory access, so the cost of
locking would increase. The process storing the shared structures could also
become a bottleneck.

The benefit of this alternative is that the lock table is protected better from
erroneous updates since only one process can access it.

20.2 With powerful clients, it still makes sense to have a client-server system, rather
than a fully centralized system. If the data-server architecture is used, the pow-
erful clients can off-load all the long and compute intensive transaction pro-
cessing work from the server, freeing it to perform only the work of satisfying
read-write requests. even if the transaction-server model is used, the clients
still take care of the user-interface work, which is typically very compute-
intensive.

A fully distributed system might seem attractive in the presence of power-
ful clients, but client-server systems still have the advantage of simpler con-
currency control and recovery schemes to be implemented on the server alone,
instead of having these actions distributed in all the machines.

20.3 a. We assume that objects are smaller than a page and fit in a page. If the in-
terconnection link is slow it is better to choose object shipping, as in page
shipping a lot of time will be wasted in shipping objects that might never
be needed. With a fast interconnection though, the communication over-
heads and latencies, not the actual volume of data to be shipped, becomes
the bottle neck. In this scenario page shipping would be preferable.
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b. Two benefits of an having an object-cache rather than a page-cache, even if
page shipping is used, are:-

i. When a client runs out of cache space, it can replace objects without
replacing entire pages. The reduced caching granularity might result
in better cache-hit ratios.

ii. It is possible for the server to ask clients to return some of the locks
which they hold, but don’t need (lock de-escalation). Thus there is
scope for greater concurrency. If page caching is used, this is not possi-
ble.

20.4 Since the part which cannot be parallelized takes 20% of the total running time,
the best speedup we can hope for has to be less than 5.

20.5 With the central server, each site does not have to remember which site to con-
tact when a particular data item is to be requested. The central server alone
needs to remember this, so data items can be moved around easily, depend-
ing on which sites access which items most frequently. Other house-keeping
tasks are also centralized rather than distributed, making the system easier to
develop and maintain. Of course there is the disadvantage of a total shutdown
in case the server becomes unavailable. Even if it is running, it may become a
bottleneck because every request has to be routed via it.
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Parallel Databases

Solutions to Practice Exercises

21.1 If there are few tuples in the queried range, then each query can be processed
quickly on a single disk. This allows parallel execution of queries with reduced
overhead of initiating queries on multiple disks.

On the other hand, if there are many tuples in the queried range, each query
takes a long time to execute as there is no parallelism within its execution. Also,
some of the disks can become hot-spots, further increasing response time.

Hybrid range partitioning, in which small ranges (a few blocks each) are
partitioned in a round-robin fashion, provides the benefits of range partition-
ing without its drawbacks.

21.2 a. When there are many small queries, inter-query parallelism gives good
throughput. Parallelizing each of these small queries would increase the
initiation overhead, without any significant reduction in response time.

b. With a few large queries, intra-query parallelism is essential to get fast re-
sponse times. Given that there are large number of processors and disks,
only intra-operation parallelism can take advantage of the parallel hard-
ware – for queries typically have few operations, but each one needs to
process a large number of tuples.

21.3 a. The speed-up obtained by parallelizing the operations would be offset by
the data transfer overhead, as each tuple produced by an operator would
have to be transferred to its consumer, which is running on a different pro-
cessor.

b. In a shared-memory architecture, transferring the tuples is very efficient.
So the above argument does not hold to any significant degree.

95



96 Chapter 21 Parallel Databases

c. Even if two operations are independent, it may be that they both supply
their outputs to a common third operator. In that case, running all three on
the same processor may be better than transferring tuples across proces-
sors.

21.4 Relation r is partitioned into n partitions, r0, r1, . . . , rn−1, and s is also parti-
tioned into n partitions, s0, s1, . . . , sn−1. The partitions are replicated and as-
signed to processors as shown below.

. . . .
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. . .. . .
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.

s0 s1 s2 s3 sn 1

r0

r1

r2

rn  1

P0,0 P0,1

P1,0 P1,1 P1,2

P2,1 P2,2 P2,3

Pn 1,
n 1

Each fragment is replicated on 3 processors only, unlike in the general case
where it is replicated on n processors. The number of processors required is
now approximately 3n, instead of n2 in the general case. Therefore given the
same number of processors, we can partition the relations into more fragments
with this optimization, thus making each local join faster.

21.5 a. A partitioning vector which gives 5 partitions with 20 tuples in each parti-
tion is: [21, 31, 51, 76]. The 5 partitions obtained are 1− 20, 21− 30, 31− 50,
51− 75 and 76− 100. The assumption made in arriving at this partitioning
vector is that within a histogram range, each value is equally likely.

b. Let the histogram ranges be called h1, h2, . . . , hh, and the partitions
p1, p2, . . . , pp. Let the frequencies of the histogram ranges be n1, n2, . . . , nh.
Each partition should contain N/p tuples, where N = Σh

i=1ni.
To construct the load balanced partitioning vector, we need to deter-

mine the value of the kth
1 tuple, the value of the kth

2 tuple and so on, where
k1 = N/p, k2 = 2N/p etc, until kp−1. The partitioning vector will then be
[k1, k2, . . . , kp−1]. The value of the kth

i tuple is determined as follows. First
determine the histogram range hj in which it falls. Assuming all values in
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a range are equally likely, the kth
i value will be

sj + (ej − sj) ∗ kij

nj

where
sj : first value in hj

ej : last value in hj

kij : ki − Σj−1
l=1 nl

21.6 a. The copies of the data items at a processor should be partitioned across
multiple other processors, rather than stored in a single processor, for the
following reasons:
• to better distribute the work which should have been done by the failed

processor, among the remaining processors.
• Even when there is no failure, this technique can to some extent deal

with hot-spots created by read only transactions.
b. RAID level 0 itself stores an extra copy of each data item (mirroring). Thus

this is similar to mirroring performed by the database itself, except that the
database system does not have to bother about the details of performing
the mirroring. It just issues the write to the RAID system, which automati-
cally performs the mirroring.

RAID level 5 is less expensive than mirroring in terms of disk space re-
quirement, but writes are more expensive, and rebuilding a crashed disk
is more expensive.
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Distributed Databases

Solutions to Practice Exercises

22.1 Data transfer on a local-area network (LAN) is much faster than on a wide-area
network (WAN). Thus replication and fragmentation will not increase through-
put and speed-up on a LAN, as much as in a WAN. But even in a LAN, replica-
tion has its uses in increasing reliability and availability.

22.2 a. The types of failure that can occur in a distributed system include
i. Computer failure (site failure).

ii. Disk failure.
iii. Communication failure.

b. The first two failure types can also occur on centralized systems.

22.3 A proof that 2PC guarantees atomic commits/aborts inspite of site and link
failures, follows. The main idea is that after all sites reply with a <ready T>
message, only the co-ordinator of a transaction can make a commit or abort
decision. Any subsequent commit or abort by a site can happen only after it
ascertains the co-ordinator’s decision, either directly from the co-ordinator, or
indirectly from some other site. Let us enumerate the cases for a site aborting,
and then for a site committing.

a. A site can abort a transaction T (by writing an <abort T> log record) only
under the following circumstances:

i. It has not yet written a <ready T> log-record. In this case, the co-
ordinator could not have got, and will not get a <ready T> or <commit
T> message from this site. Therefore only an abort decision can be
made by the co-ordinator.
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ii. It has written the <ready T> log record, but on inquiry it found out
that some other site has an <abort T> log record. In this case it is
correct for it to abort, because that other site would have ascertained
the co-ordinator’s decision (either directly or indirectly) before actu-
ally aborting.

iii. It is itself the co-ordinator. In this case also no site could have com-
mitted, or will commit in the future, because commit decisions can be
made only by the co-ordinator.

b. A site can commit a transaction T (by writing an <commit T> log record)
only under the following circumstances:

i. It has written the <ready T> log record, and on inquiry it found out
that some other site has a <commit T> log record. In this case it is
correct for it to commit, because that other site would have ascertained
the co-ordinator’s decision (either directly or indirectly) before actually
committing.

ii. It is itself the co-ordinator. In this case no other participating site can
abort/ would have aborted, because abort decisions are made only by
the co-ordinator.

22.4 Site A cannot distinguish between the three cases until communication has
resumed with site B. The action which it performs while B is inaccessible must
be correct irrespective of which of these situations has actually occurred, and
must be such that B can re-integrate consistently into the distributed system
once communication is restored.

22.5 We can have a scheme based on sequence numbers similar to the scheme based
on timestamps. We tag each message with a sequence number that is unique
for the (sending site, receiving site) pair. The number is increased by 1 for each
new message sent from the sending site to the receiving site.

The receiving site stores and acknowledges a received message only if it
has received all lower numbered messages also; the message is stored in the
received-messages relation.

The sending site retransmits a message until it has received an ack from the
receiving site containing the sequence number of the transmitted message, or
a higher sequence number. Once the acknowledgment is received, it can delete
the message from its send queue.

The receiving site discards all messages it receives that have a lower se-
quence number than the latest stored message from the sending site. The re-
ceiving site discards from received-messages all but the (number of the) most
recent message from each sending site (message can be discarded only after
being processed locally).

Note that this scheme requires a fixed (and small) overhead at the receiv-
ing site for each sending site, regardless of the number of messages received.
In contrast the timestamp scheme requires extra space for every message. The
timestamp scheme would have lower storage overhead if the number of mes-
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sages received within the timeout interval is small compared to the number
of sites, whereas the sequence number scheme would have lower overhead
otherwise.

22.6 Consider the balance in an account, replicated at N sites. Let the current bal-
ance be $100 – consistent across all sites. Consider two transactions T1 and T2

each depositing $10 in the account. Thus the balance would be $120 after both
these transactions are executed. Let the transactions execute in sequence: T1

first and then T2. Let one of the sites, say s, be down when T1 is executed and
transaction t2 reads the balance from site s. One can see that the balance at the
primary site would be $110 at the end.

22.7 In remote backup systems all transactions are performed at the primary site
and the data is replicated at the remote backup site. The remote backup site
is kept synchronized with the updates at the primary site by sending all log
records. Whenever the primary site fails, the remote backup site takes over
processing.

The distributed systems offer greater availability by having multiple copies
of the data at different sites whereas the remote backup systems offer lesser
availability at lower cost and execution overhead.

In a distributed system, transaction code runs at all the sites whereas in a
remote backup system it runs only at the primary site. The distributed sys-
tem transactions follow two-phase commit to have the data in consistent state
whereas a remote backup system does not follow two-phase commit and avoids
related overhead.

22.8 Consider the balance in an account, replicated at N sites. Let the current bal-
ance be $100 – consistent across all sites. Consider two transactions T1 and T2

each depositing $10 in the account. Thus the balance would be $120 after both
these transactions are executed. Let the transactions execute in sequence: T1

first and then T2. Suppose the copy of the balance at one of the sites, say s, is
not consistent – due to lazy replication strategy – with the primary copy after
transaction T1 is executed and let transaction T2 read this copy of the balance.
One can see that the balance at the primary site would be $110 at the end.

22.9 Let us say a cycle Ti → Tj → · · · → Tm → Ti exists in the graph built by the
controller. The edges in the graph will either be local edges of the from (Tk, Tl)
or distributed edges of the form (Tk, Tl, n). Each local edge (Tk, Tl) definitely
implies that Tk is waiting for Tl. Since a distributed edge (Tk, Tl, n) is inserted
into the graph only if Tk’s request has reached Tl and Tl cannot immediately
release the lock, Tk is indeed waiting for Tl. Therefore every edge in the cycle
indeed represents a transaction waiting for another. For a detailed proof that
this imlies a deadlock refer to Stuart et al. [1984].

We now prove the converse implication. As soon as it is discovered that Tk

is waiting for Tl:

a. a local edge (Tk, Tl) is added if both are on the same site.
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b. The edge (Tk, Tl, n) is added in both the sites, if Tk and Tl are on different
sites.

Therefore, if the algorithm were able to collect all the local wait-for graphs at
the same instant, it would definitely discover a cycle in the constructed graph,
in case there is a circular wait at that instant. If there is a circular wait at the
instant when the algorithm began execution, none of the edges participating in
that cycle can disappear until the algorithm finishes. Therefore, even though
the algorithm cannot collect all the local graphs at the same instant, any cycle
which existed just before it started will anyway be detected.

22.10 a. i. Send the query Πname(employee) to the Boca plant.
ii. Have the Boca location send back the answer.

b. i. Compute average at New York.
ii. Send answer to San Jose.

c. i. Send the query to find the highest salaried employee to Toronto, Ed-
monton, Vancouver, and Montreal.

ii. Compute the queries at those sites.
iii. Return answers to San Jose.

d. i. Send the query to find the lowest salaried employee to New York.
ii. Compute the query at New York.

iii. Send answer to San Jose.

22.11 The result is as follows.

r � s = A B C
1 2 3
5 3 2

22.12 The reasons are:
a. Directory access protocols are simplified protocols that cater to a limited

type of access to data.
b. Directory systems provide a simple mechanism to name objects in a hi-

erarchical fashion which can be used in a distributed directory system to
specify what information is stored in each of the directory servers. The di-
rectory system can be set up to automatically forward queries made at one
site to the other site, without user intervention.
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Application Development
and Administration

Solutions to Practice Exercises

23.1 No answer.

23.2 No answer.

23.3 No answer.

23.4 a. Let there be 100 transactions in the system. The given mix of transaction
types would have 25 transactions each of type A and B, and 50 transactions
of type C. Thus the time taken to execute transactions only of type A is 0.5
seconds and that for transactions only of type B or only of type C is 0.25
seconds. Given that the transactions do not interfere, the total time taken to
execute the 100 transactions is 0.5+0.25+0.25 = 1 second. i.e, the average
overall transaction throughput is 100 transactions per second.

b. One of the most important causes of transaction interference is lock con-
tention. In the previous example, assume that transactions of type A and
B are update transactions, and that those of type C are queries. Due to the
speed mismatch between the processor and the disk, it is possible that a
transaction of type A is holding a lock on a “hot” item of data and waiting
for a disk write to complete, while another transaction (possibly of type B
or C) is waiting for the lock to be released by A. In this scenario some CPU
cycles are wasted. Hence, the observed throughput would be lower than
the calculated throughput.

Conversely, if transactions of type A and type B are disk bound, and
those of type C are CPU bound, and there is no lock contention, observed
throughput may even be better than calculated.

Lock contention can also lead to deadlocks, in which case some transac-
tion(s) will have to be aborted. Transaction aborts and restarts (which may
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also be used by an optimistic concurrency control scheme) contribute to
the observed throughput being lower than the calculated throughput.

Factors such as the limits on the sizes of data-structures and the variance
in the time taken by book-keeping functions of the transaction manager
may also cause a difference in the values of the observed and calculated
throughput.

23.5 In the absence of an anticipatory standard it may be difficult to reconcile be-
tween the differences among products developed by various organizations.
Thus it may be hard to formulate a reactionary standard without sacrificing
any of the product development effort. This problem has been faced while
standardizing pointer syntax and access mechanisms for the ODMG standard.

On the other hand, a reactionary standard is usually formed after extensive
product usage, and hence has an advantage over an anticipatory standard -
that of built-in pragmatic experience. In practice, it has been found that some
anticipatory standards tend to be over-ambitious. SQL-3 is an example of a
standard that is complex and has a very large number of features. Some of
these features may not be implemented for a long time on any system, and
some, no doubt, will be found to be inappropriate.
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Advanced Data Types
and New Applications

Solutions to Practice Exercises

24.1 A temporal database models the changing states of some aspects of the real
world. The time intervals related to the data stored in a temporal database may
be of two types - valid time and transaction time. The valid time for a fact is the
set of intervals during which the fact is true in the real world. The transaction
time for a data object is the set of time intervals during which this object is part
of the physical database. Only the transaction time is system dependent and is
generated by the database system.

Suppose we consider our sample bank database to be bitemporal. Only the
concept of valid time allows the system to answer queries such as - “What was
Smith’s balance two days ago?”. On the other hand, queries such as - “What
did we record as Smith’s balance two days ago?” can be answered based on
the transaction time. The difference between the two times is important. For
example, suppose, three days ago the teller made a mistake in entering Smith’s
balance and corrected the error only yesterday. This error means that there is a
difference between the results of the two queries (if both of them are executed
today).

24.2 The given query is not a range query, since it requires only searching for a
point. This query can be efficiently answered by a B-tree index on the pair of
attributes (x, y).

24.3 Suppose that we want to search for the nearest neighbor of a point P in a
database of points in the plane. The idea is to issue multiple region queries
centered at P . Each region query covers a larger area of points than the previ-
ous query. The procedure stops when the result of a region query is non-empty.
The distance from P to each point within this region is calculated and the set
of points at the smallest distance is reported.
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24.4 Large bounding boxes tend to overlap even where the region of overlap does
not contain any information. The following figure:

R

shows a region R within which we have to locate a segment. Note that even
though none of the four segments lies in R, due to the large bounding boxes,
we have to check each of the four bounding boxes to confirm this.

A significant improvement is observed in the follwoing figure:

R

where each segment is split into multiple pieces, each with its own bounding
box. In the second case, the box R is not part of the boxes indexed by the R-tree.
In general, dividing a segment into smaller pieces causes the bounding boxes
to be smaller and less wasteful of area.
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24.5 Following is a recursive procedure for computing spatial join of two R-trees.

SpJoin(node n1, node n2)
begin

if(the bounding boxes of n1 and n2 do not intersect)
return;

if(both n1 and n2 are leaves)
output all pairs of entries (e1, e2) such that

e1 ∈ n1 and e2 ∈ n2, and e1 and e2 overlap;
if(n1 is not a leaf)

NS1 = set of children of n1;
else

NS1 = { n1 };
if(n1 is not a leaf)

NS1 = set of children of n1;
else

NS1 = { n1 };
for each ns1 in NS1 and ns2 in NS2;

SpJoin(ns1, ns2);
end

24.6 The concepts of RAID can be used to improve reliability of the broadcast of data
over wireless systems. Each block of data that is to be broadcast is split into
units of equal size. A checksum value is calculated for each unit and appended
to the unit. Now, parity data for these units is calculated. A checksum for the
parity data is appended to it to form a parity unit. Both the data units and the
parity unit are then broadcast one after the other as a single transmission.

On reception of the broadcast, the receiver uses the checksums to verify
whether each unit is received without error. If one unit is found to be in er-
ror, it can be reconstructed from the other units.

The size of a unit must be chosen carefully. Small units not only require
more checksums to be computed, but the chance that a burst of noise corrupts
more than one unit is also higher. The problem with using large units is that
the probability of noise affecting a unit increases; thus there is a tradeoff to be
made.

24.7 We can distinguish two models of broadcast data. In the case of a pure broad-
cast medium, where the receiver cannot communicate with the broadcaster, the
broadcaster transmits data with periodic cycles of retransmission of the entire
data, so that new receivers can catch up with all the broadcast information.
Thus, the data is broadcast in a continuous cycle. This period of the cycle can
be considered akin to the worst case rotational latency in a disk drive. There is
no concept of seek time here. The value for the cycle latency depends on the
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application, but is likely to be at least of the order of seconds, which is much
higher than the latency in a disk drive.

In an alternative model, the receiver can send requests back to the broad-
caster. In this model, we can also add an equivalent of disk access latency, be-
tween the receiver sending a request, and the broadcaster receiving the request
and responding to it. The latency is a function of the volume of requests and
the bandwidth of the broadcast medium. Further, queries may get satisfied
without even sending a request, since the broadcaster happened to send the
data either in a cycle or based on some other receivers request. Regardless, la-
tency is likely to be at least of the order of seconds, again much higher than the
corresponding values for a hard disk.

A typical hard disk can transfer data at the rate of 1 to 5 megabytes per
second. In contrast, the bandwidth of a broadcast channel is typically only a
few kilobytes per second. Total latency is likely to be of the order of seconds to
hundreds or even thousands of seconds, compared to a few milliseconds for a
hard disk.

24.8 Let C be the computer onto which the central database is loaded. Each mobile
computer (host) i stores, with its copy of each document d, a version-vector –
that is a set of version numbers Vd,i,j , with one entry for each other host j that
stores a copy of the document d, which it could possibly update.

Host A updates document 1 while it is disconnected from C. Thus, accord-
ing to the version vector scheme, the version number V1,A,A is incremented by
one.

Now, suppose host A re-connects to C. This pair exchanges version-vectors
and finds that the version number V1,A,A is greater than V1,C,A by 1, (assuming
that the copy of document 1 stored host A was updated most recently only by
host A). Following the version-vector scheme, the version of document 1 at C
is updated and the change is reflected by an increment in the version number
V1,C,A. Note that these are the only changes made by either host.

Similarly, when host B connects to host C, they exchange version-vectors,
and host B finds that V1,B,A is one less than V1,C,A. Thus, the version number
V1,B,A is incremented by one, and the copy of document 1 at host B is updated.

Thus, we see that the version-vector scheme ensures proper updating of the
central database for the case just considered. This argument can be very easily
generalized for the case where multiple off-line updates are made to copies of
document 1 at host A as well as host B and host C. The argument for off-line
updates to document 2 is similar.
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Advanced Transaction
Processing

Solutions to Practice Exercises

25.1 a. The tasks in a workflow have dependencies based on their status. For ex-
ample the starting of a task may be conditional on the outcome (such as
commit or abort) of some other task. All the tasks cannot execute indepen-
dently and concurrently, using 2PC just for atomic commit.

b. Once a task gets over, it will have to expose its updates, so that other tasks
running on the same processing entity don’t have to wait for long. 2PL is
too strict a form of concurrency control, and is not appropriate for work-
flows.

c. Workflows have their own consistency requirements; that is, failure-atomicity.
An execution of a workflow must finish in an acceptable termination state.
Because of this, and because of early exposure of uncommitted updates,
the recovery procedure will be quite different. Some form of logical log-
ging and compensation transactions will have to be used. Also to perform
forward recovery of a failed workflow, the recovery routines need to re-
store the state information of the scheduler and tasks, not just the updated
data items. Thus simple WAL cannot be used.

25.2 • Loading the entire database into memory in advance can provide trans-
actions which need high-speed or realtime data access the guarantee that
once they start they will not have to wait for disk accesses to fetch data.
However no transaction can run till the entire database is loaded.

• The advantage in loading on demand is that transaction processing can
start rightaway; however transactions may see long and unpredictable de-
lays in disk access until the entire database is loaded into memory.

25.3 A high-performance system is not necessarily a real-time system. In a high
performance system, the main aim is to execute each transaction as quickly as

109



110 Chapter 25 Advanced Transaction Processing

possible, by having more resources and better utilization. Thus average speed
and response time are the main things to be optimized. In a real-time system,
speed is not the central issue. Here each transaction has a deadline, and taking
care that it finishes within the deadline or takes as little extra time as possible,
is the critical issue.

25.4 In the presence of long-duration transactions, trying to ensure serializability
has several drawbacks:-

a. With a waiting scheme for concurrency control, long-duration transactions
will force long waiting times. This means that response time will be high,
concurrency will be low, so throughput will suffer. The probability of dead-
locks is also increased.

b. With a time-stamp based scheme, a lot of work done by a long-running
transaction will be wasted if it has to abort.

c. Long duration transactions are usually interactive in nature, and it is very
difficult to enforce serializability with interactiveness.

Thus the serializability requirement is impractical. Some other notion of database
consistency has to be used in order to support long duration transactions.

25.5 Each thread can be modeled as a transaction T which takes a message from the
queue and delivers it. We can write transaction T as a multilevel transaction
with subtransactions T1 and T2. Subtransaction T1 removes a message from
the queue and subtransaction T2 delivers it. Each subtransaction releases locks
once it completes, allowing other transactions to access the queue. If transac-
tion T2 fails to deliver the message, transaction T1 will be undone by invoking
a compensating transaction which will restore the message to the queue.

25.6 Consider the advanced recovery algorithm of Section 17.8. The redo pass, which
repeats history, is the same as before. We discuss below how the undo pass is
handled.
• Recovery with nested transactions:

Each subtransaction needs to have a unique TID, because a failed sub-
transaction might have to be independently rolled back and restarted.

If a subtransaction fails, the recovery actions depend on whether the
unfinished upper-level transaction should be aborted or continued. If it
should be aborted, all finished and unfinished subtransactions are undone
by a backward scan of the log (this is possible because the locks on the
modified data items are not released as soon as a subtransaction finishes).
If the nested transaction is going to be continued, just the failed transaction
is undone, and then the upper-level transaction continues.

In the case of a system failure, depending on the application, the entire
nested-transaction may need to be aborted, or, (for e.g., in the case of long
duration transactions) incomplete subtransactions aborted, and the nested
transaction resumed. If the nested-transaction must be aborted, the roll-
back can be done in the usual manner by the recovery algorithm, during
the undo pass. If the nested-transaction must be restarted, any incomplete
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subtransactions that need to be rolled back can be rolled back as above.
To restart the nested-transaction, state information about the transaction,
such as locks held and execution state, must have been noted on the log,
and must restored during recovery. Mini-batch transactions (discussed in
Section 23.1.8) are an example of nested transactions that must be restarted.

• Recovery with multi-level transactions:
In addition to what is done in the previous case, we have to handle

the problems caused by exposure of updates performed by committed
subtransactions of incomplete upper-level transactions. A committed sub-
transaction may have released locks that it held, so the compensating trans-
action has to reacquire the locks. This is straightforward in the case of
transaction failure, but is more complicated in the case of system failure.

The problem is, a lower level subtransaction a of a higher level transac-
tion A may have released locks, which have to be reacquired to compen-
sate A during recovery. Unfortunately, there may be some other lower level
subtransaction b of a higher level transaction B that started and acquired
the locks released by a, before the end of A. Thus undo records for b may
precede the operation commit record for A. But if b had not finished at the
time of the system failure, it must first be rolled back and its locks released,
to allow the compensating transaction of A to reacquire the locks.

This complicates the undo pass; it can no longer be done in one back-
ward scan of the log. Multilevel recovery is described in detail in David
Lomet, “MLR: A Recovery Method for Multi-Level Systems”, ACM SIGMOD
Conf. on the Management of Data 1992, San Diego.

25.7 a. We can have a special data item at some site on which a lock will have
to be obtained before starting a global transaction. The lock should be re-
leased after the transaction completes. This ensures the single active global
transaction requirement. To reduce dependency on that particular site be-
ing up, we can generalize the solution by having an election scheme to
choose one of the currently up sites to be the co-ordinator, and requiring
that the lock be requested on the data item which resides on the currently
elected co-ordinator.

b. The following schedule involves two sites and four transactions. T1 and T2

are local transactions, running at site 1 and site 2 respectively. TG1 and TG2

are global transactions running at both sites. X1, Y1 are data items at site 1,
and X2, Y2 are at site 2.
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T1 T2 TG1 TG2

write(Y1)
read(Y1)
write(X 2)

read(X 2)
write(Y2)

read(Y2)
write(X 1)

read(X 1)

In this schedule, TG2 starts only after TG1 finishes. Within each site, there
is local serializability. In site 1, TG2 → T1 → TG1 is a serializability order.
In site 2, TG1 → T2 → TG2 is a serializability order. Yet the global schedule
schedule is non-serializable.

25.8 a. The same system as in the answer to Exercise 25.7 is assumed, except
that now both the global transactions are read-only. Consider the sched-
ule given below.

T1 T2 TG 1 TG2

read(X 1)
write(X 1)

read(X 1)
read(X 2)

write(X 2)
read(X 2)

Though there is local serializability in both sites, the global schedule is not
serializable.

b. Since local serializability is guaranteed, any cycle in the system wide prece-
dence graph must involve at least two different sites, and two different
global transactions. The ticket scheme ensures that whenever two global
transactions access data at a site, they conflict on a data item (the ticket)
at that site. The global transaction manager controls ticket access in such
a manner that the global transactions execute with the same serializability
order in all the sites. Thus the chance of their participating in a cycle in the
system wide precedence graph is eliminated.
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