
DBMS LAB MANUAL KNREDDY

 1

INTRODUCTION TO DATABASE SYSTEMS
DATA: Data is the raw material from which useful information is derived.
 Data is a collection of facts which is unorganized but can be made organized into useful
information.
 Data can be defined in many ways. Information science defines data as unprocessed
information
 In computer science, data is anything in a form suitable for use with a computer. Data is often
distinguished from programs. A program is a set of instructions that detail a task for the computer to
perform. In this sense, data is thus everything that is not program code.

INFORMATION: Information is data that have been organized and communicated in a coherent and
meaningful manner.
 Data that have been processed in such a way so as to increase the knowledge of the person who
uses the data is known as information.
 Data is converted into information, and information is converted into knowledge.
Knowledge; information evaluated and organized so that it can be used purposefully.

META DATA: Data that describe the properties of other data is known as Meta data
 META DATA = data about data
DATABASE: A database is a collection of information that is organized so that it can easily be
accessed, managed, and updated. In one view, databases can be classified according to types of
content: bibliographic, full-text, numeric, and images.
DBMS: The database management system (DBMS), is a computer software program that is designed
as the means of managing all databases that are currently installed on a system hard drive or network.
 DBMS is a collection of interrelated data and a set of programs to access those data
 Data management is a discipline that focuses on the proper generation , storage and retrieval of
data.
Different types of database management systems exist, with some of them designed for the oversight
and proper control of databases that are configured for specific purposes
In database management system (DBMS), data files are the files that store the database information,
whereas other files, such as index files and data dictionaries, store administrative information, known
as metadata.

KNOWLEDGE: Knowledge is the body of information and facts about a specific subject
.Knowledge implies familiarity, awareness and understanding of information as it applies to an
environment.
 A key characteristic of knowledge is that “new” knowledge can be derived from “old”
knowledge.
DATABASE SYSTEM: Data base system is a system to achieve an organized, store a large number
of dynamical associated data, facilitate for multi-user accessing to computer hardware, software and
data, that it is a computer system with database technology

• Data constitute the building blocks of information
• Information is produced by processing data
• Information is used to reveal the meaning of data.
• Accurate, relevant and timely information is the key to good decision making
• Good decision making is the key to organizational survival in a global environment

DBMS LAB MANUAL KNREDDY

 2

ER MODEL

• Attribute - a property or description of an entity. A toy department employee entity could have
attributes describing the employee’s name, salary, and years of service.

• Domain - a set of possible values for an attribute.
• Entity - an object in the real world that is distinguishable from other objects.
• Relationship - an association among two or more entities.
• Entity set - a collection of similar entities such as all of the toys in the toy department.
• Relationship set - a collection of similar relationships
• One-to-many relationship - a key constraint that indicates that one entity can be associated

with many of another entity. An example of a one-to-many relationship is when an employee
can work for only one department, and a department can have many employees.

• Many-to-many relationship - a key constraint that indicates that many of one entity can be
associated with many of another entity. An example of a many-to-many relationship is
employees and their hobbies: a person can have many different hobbies, and many people can
have the same hobby.

• Participation constraint - a participation constraint determines whether relationships must
involve certain entities. An example is if every department entity has a manager entity.
Participation constraints can either be total or partial. A total participation constraint says that
every department has a manager. A partial participation constraint says that every employee
does not have to be a manager.

• Overlap constraint - within an ISA hierarchy, an overlap constraint determines whether or not
two subclasses can contain the same entity.

• Covering constraint - within an ISA hierarchy, a covering constraint determines where the
entities in the subclasses collectively include all entities in the superclass. For example, with an
Employees entity set with subclasses Hourly Employee and Salary Employee, does every
Employee entity necessarily have to be within either Hourly Employee or Salary Employee?

• Weak entity set - an entity that cannot be identified uniquely without considering some primary
key attributes of another identifying owner entity. An example is including Dependent
information for employees for insurance purposes.

• Aggregation - a feature of the entity relationship model that allows a relationship set to
participate in another relationship set. This is indicated on an ER diagram by drawing a dashed
box around the aggregation.

• Role indicator - If an entity set plays more than one role, role indicators describe the different
purpose in the relationship. An example is a single Employee entity set with a relation
Reports- To that relates supervisors and subordinates.

DBMS LAB MANUAL KNREDDY

 3

ER DIAGRAM OF UNIVERSITY DATABASE

Consider the following information about a university database:

1. Professors have an SSN, a name, an age, a rank, and a research specialty.
2. Projects have a project number, a sponsor name (e.g., NSF), a starting date, an ending date, and

a budget.
3. Graduate students have an SSN, a name, an age, and a degree program (e.g., M.S. or Ph.D.).
4. Each project is managed by one professor (known as the project’s principal investigator).
5. Each project is worked on by one or more professors (known as the project’s co-investigators).
6. Professors can manage and/or work on multiple projects.
7. Each project is worked on by one or more graduate students (known as the project’s research

assistants).
8. When graduate students work on a project, a professor must supervise their work on the

project. Graduate students can work on multiple projects, in which case they will have a
(potentially different) supervisor for each one.

9. Departments have a department number, a department name, and a main office.
10. Departments have a professor (known as the chairman) who runs the department.
11. Professors work in one or more departments, and for each department that they work in, a time

percentage is associated with their job.
12. Graduate students have one major department in which they are working on their degree.
13. Each graduate student has another, more senior graduate student (known as a student advisor)

who advises him or her on what courses to take.
Design and draw an ER diagram that captures the information about the university. Use only the
basic ER model here; that is, entities, relationships, and attributes. Be sure to indicate any key and
participation constraints.

DBMS LAB MANUAL KNREDDY

 4

RELATIONAL MODEL

Basic Structure of relational model - The relational model for database management is a data

model based on predicate logic and set theory. It was invented by Edgar Codd. The fundamental

assumption of the relational model is that all data are represented as mathematical n-ary relations, an

n-ary relation being a subset of the Cartesian product of n sets.

1) Relation - The fundamental organizational structure for data in the relational model is the relation.

A relation is a two-dimensional table made up of rows and columns. Each relation also called a table,

stores data about entities.

 A relational database schema is a collection of relation schemas, describing one or more relations

2) Tuples - The rows in a relation are called tuples. They represent specific occurrences (or records)

of an entity. Each row consists of a sequence of values, one for each column in the table. In addition,

each row (or record) in a table must be unique. A tuple variable is a variable that stand for a tuple.

3) Attributes – The column in a relation is called attribute. The attributes represent characteristics of

an entity.

4) Domain – For each attribute there is a set of permitted values called domain of that attribute. For

all relations ‘r’, the domain of all attributes of ‘r’ should be atomic. A domain is said to be atomic

if elements of the domain are considered to be indivisible units.

Database Schema – Logical design of the database is termed as database schema.

Database instance – Database instance is a snapshot of the data in a database at a given instant of

time.

Relation schema – The concept of relation schema corresponds to the programming notion of type

definition. It can be considered as the definition of a domain of values. The database schema is the

collection of relation schemas that define a database.

• The relation cardinality is the number of tuples in the relation.
• The relation degree is the number of fields (or columns) in the relation.

Relation instance – The concept of a relation instance corresponds to the programming language

notion of a value of a variable. For relation instance, we actually mean the “relation” itself.

Keys – A key is the relational means of specifying uniqueness. The keys applicable in relational model

are primary key, candidate key and super key.

1.) Primary key - A primary key is a value that can be used to identify a unique row in a table.

Attributes are associated with it.

DBMS LAB MANUAL KNREDDY

 5

2.) Candidate key - A candidate key of a relation variable is a set of attributes of that relation variable

such that (1) at all times it holds in the relation assigned to that variable that there are no two distinct

tuples with the same values for these attributes and (2) there is not a proper subset for which (1) holds.

3.) Super key - A superkey is defined in the relational model as a set of attributes of a relation variable

for which it holds that in all relations assigned to that variable there are no two distinct tuples that have

the same values for the attributes in this set.

4.) Foreign key - A foreign key is a field or group of fields in a database record that point to a key

field or group of fields forming a key of another database record in some (usually different) table. A

relation schema, r1, derived from an E-R schema may include among its attributes the primary key of

another relation schema, r2. This attribute is the foreign key from r1, referencing r2. The relation r1 is

called the referencing relation of the foreign key dependency and r2 is called the referenced relation of

r2.

Schema diagram – A database schema, along with primary key and foreign key dependencies, can be

depicted pictorially by schema diagrams. Each relation in the database schema is represented as a box,

with the attributes listed inside it and the relation name above it. If there are primary key attributes, a

horizontal line crosses the box, with the primary key attributes listed above the line. Foreign key

dependencies appear as arrows from the foreign key attributes of the referencing relation to the foreign

key attributes of the referenced relation.

DBMS LAB MANUAL KNREDDY

 6

ER TO RELATIONAL MODEL
 Consider the university database from previous exercise and the ER diagram you designed. Convert
the ER diagram to Relational model(represent in table format)

1. Table name:professors
 Primary key: prof_ssn

2. Table name : Depts
 PRIMARY KEY: dno

3. Table name Runs
 PRIMARY LEY: dno +prof_ssn

FOREIGN KEY (prof ssn) REFERENCES Professors,
FOREIGN KEY (dno) REFERENCES Depts

4. Table name: Work Dept

PRIMARY KEY (dno, prof ssn),
FOREIGN KEY (prof ssn) REFERENCES Professors,
FOREIGN KEY (dno) REFERENCES Depts)

5. Table name: Project
PRIMARY KEY (pid))

6. Table name : Graduates
PRIMARY KEY (grad ssn),
FOREIGN KEY (major) REFERENCES Depts

Note that the Major table is not necessary since each Graduate has only one major
and so this can be an attribute in the Graduates table.

prof-ssn name age rank speciality

dno Dname office

dno prof_ssn

dno prof_ssn pc_time

pid sponsor start_date end_date budget

grad_ssn age name deg_prog major

DBMS LAB MANUAL KNREDDY

 7

7. Table name: Advisor

PRIMARY KEY (senior ssn, grad ssn),
FOREIGN KEY (senior ssn) REFERENCES Graduates (grad ssn),
FOREIGN KEY (grad ssn) REFERENCES Graduates

8. table name : Manages
 PRIMARY KEY (pid, prof ssn),

FOREIGN KEY (prof ssn) REFERENCES Professors,
FOREIGN KEY (pid) REFERENCES Projects

9. Table name : Work_In
 PRIMARY KEY (pid, prof ssn),

FOREIGN KEY (prof ssn) REFERENCES Professors,
FOREIGN KEY (pid) REFERENCES Projects

Observe that we cannot enforce the participation constraint for Projects in the Work In table without
check constraints or assertions in SQL.

10. Table name : Supervises

PRIMARY KEY (prof ssn, grad ssn, pid),
FOREIGN KEY (prof ssn) REFERENCES Professors,
FOREIGN KEY (grad ssn) REFERENCES Graduates,
FOREIGN KEY (pid) REFERENCES Projects

Note that we do not need an explicit table for the Work Proj relation since every time a Graduate
works on a Project, he or she must have a Supervisor.

senior_ssn grad_ssn

pid prof_ssn

pid prof_ssn

prof_ssn grad_ssn pid

DBMS LAB MANUAL KNREDDY

 8

INTRODUCTION TO SQL

 SQL (Structured Query Language) is a database computer language designed for the retrieval and
management of data in relational database management systems (RDBMS), database schema creation
and modification, and database object access control management.

SQL is a programming language for querying and modifying data and managing databases. SQL was
standardized first by the ANSI and (later) by the ISO. Most database management systems implement
a majority of one of these standards and add their proprietary extensions. SQL allows the retrieval,
insertion, updating, and deletion of data.

 A database management system also includes management and administrative functions. Most -- if
not all -- implementations also include a Command-line Interface (SQL/CLI) that allows for the entry
and execution of the language commands, as opposed to only providing an API intended for access
from a GUI.

 The first version of SQL was developed at IBM by Donald D. Chamberlin and Raymond F. Boyce
in the early 1970s. This version, initially called SEQUEL, was designed to manipulate and retrieve
data stored in IBM's original relational database product, System R. IBM patented their version of
SQL in 1985, while the SQL language was not formally standardized until 1986, by the American
National Standards Institute (ANSI) as SQL-86. Subsequent versions of the SQL standard have been
released by ANSI and as International Organization for Standardization (ISO) standards.

 Originally designed as a declarative query and data manipulation language, variations of SQL have
been created by SQL database management system (DBMS) vendors that add procedural constructs,
control-of-flow statements, user-defined data types, and various other language extensions. With the
release of the SQL:1999 standard, many such extensions were formally adopted as part of the SQL
language via the SQL Persistent Stored Modules (SQL/PSM) portion of the standard.
Common criticisms of SQL include a perceived lack of cross-platform portability between vendors,
inappropriate handling of missing data (see Null (SQL)), and unnecessarily complex and occasionally
ambiguous language grammar and semantics.

DBMS LAB MANUAL KNREDDY

 9

FEATURES OF SQL

 SQL is both an easy-to-understand language and a comprehensive tool for managing data. Some of
the major features of SQL are
· Vendor independence
· Portability across computer systems
· SQL standards
· IBM endorsement and commitment (DB2)
· Microsoft commitment (SQL Server , ODBC, and ADO)
· Relational foundation
· High-level, English-like structure
· Interactive, ad hoc queries
· Programmatic database access
· Multiple views of data
· Complete database language
· Dynamic data definition
· Client/server architecture
· Enterprise application support
· Extensibility and object technology
· Internet database access
· Java integration (JDBC)
· Industry infrastructure

DBMS LAB MANUAL KNREDDY

 10

OVERVIEW OF SQL DDL, DML AND DCL COMMANDS.

DDL is Data Definition Language statements.
Data Definition Language (DDL) statements are used to define the database structure or schema.
DDL Commands: Create , Alter ,Drop , Rename, Truncate
 Some examples:
CREATE - to create objects in the database

ALTER - alters the structure of the database

DROP - delete objects from the database

TRUNCATE - remove all records from a table, including all spaces allocated for the records are
removed
COMMENT - add comments to the data dictionary

GRANT - gives user's access privileges to database

REVOKE - withdraw access privileges given with the GRANT command

DML is Data Manipulation Language statements. Data Manipulation Language (DML) statements are
used for managing data within schema objects
 Some examples:

SELECT - retrieve data from the a database

INSERT - insert data into a table

UPDATE - updates existing data within a table

DELETE - deletes all records from a table, the space for the records remain

CALL - call a PL/SQL or Java subprogram

LOCK TABLE - control concurrency

DCL: Data Control Language (DCL) statements is used to create roles, permissions, and referential
integrity as well it is used to control access to database by securing it.

DCL Commands: Grant, Revoke

 GRANT - gives user's access privileges to database
 REVOKE - withdraw access privileges given with the GRANT command

TCL: Transaction Control (TCL) statements are used to manage the changes made by DML
statements. It allows statements to be grouped together into logical transactions.

TCL Commands: Commit, Rollback, Save point

 COMMIT - save work done
 SAVEPOINT - identify a point in a transaction to which you can later roll back
 ROLLBACK - restore database to original since the last COMMIT

DBMS LAB MANUAL KNREDDY

 11

SQL BASIC DATA TYPES
 char (n): Fixed length character data (String), n characters long.

 Eg: char(40)

varchar2(n): variable length character string.Only the bytes used for a string require storage
 Eg: varchar2(80)

number(o,d): numeric datatype for integer and reals.
 o : overall number of digits
 d: number of digits to the right of the decimal point

 Eg: number(5,2) ; cannot contain anything larger than 999.99
Data types derived from number are int[eger],dec[imal],smallint and real.

Date: date datatype for storing date and time. Default format for date is DD-MMM-YY
 Eg: 15-AUG-1947

DBMS LAB MANUAL KNREDDY

 12

HOW TO WRITE AND EXECUTE SQL, PL/SQL COMMANDS/PROGRAMS:

1). Open your oracle application by the following navigation

Start->all programs->Oracle Database 10g Express Edition ->Run SQL Command Line

2). You will be asked for user name, password.

You have to enter user name, pass word.

3). Upon successful login you will get SQL prompt (SQL>).

In two ways you can write your programs:
a) directly at SQL prompt (or)
b) in sql editor.

If you type your programs at sql prompt then screen will look like follow:

SQL> SELECT ename,empno,
2 sal from
3 emp;
where 2 and 3 are the line numbers and rest is the command /program……

to execute above program/command you have to press ‘/’ then enter.

Here editing the program is somewhat difficult; if you want to edit the previous command then you
have to open sql editor (by default it displays the sql buffer contents). By giving ‘ed’ at sql
prompt.(this is what I mentioned as a second method to type/enter the program).In the sql editor you
can do all the formatting/editing/file operations directly by selecting menu options provided by it.

To execute the program which saved; do the following
SQL> @ programname.sql (or)
SQL> Run programname.sql
Then press ‘\’ key and enter.
To save the day`s session ;do the following
SQL>commit;

This how we can write, edit and execute the sql command and programs.

Always you have to save your programs in your own logins.

DBMS LAB MANUAL KNREDDY

 13

BASIC SQL COMMANDS

1. The CREATE TABLE Command: - it defines each column of the table uniquely. Each
column has minimum of three attributes, a name , data type and size.

Syntax:
SQL>create table <table name> (
 <column1> <datatype>(<size>),
 <column2> <datatype><size>),
 .
 .
 <column n> <datatype><size>));
Ex:
SQL>create table student(stunum number(4) ,
 stuname varchar2(10),
 stubranch char(4));
SQL> Table created.
Relational schema for student relation:
SQL> desc student;
SQL> NAME NULL? TYPE
 --
 stunum number(4)
 stuname varchar2(10)
 stubranch char(4)

2. Adding table rows / Inserting Data into Tables: - once a table is created the most natural
thing to do is load this table with data to be manipulated later.

Syntax 1:
SQL> insert into <tablename> (<column1>,<column2>…..<column n>) values(<value1>,

<value 2>…….<value n>);
Syntax 2:
SQL>insert into <tablename> values (&<column1>,&<column2>……,&<column n>);
Syntax 3:
SQL>insert into <tablename> values (<val 1>,<val 2>…….,<val n>);

Attributes with char/varchar datatype are placed within single quotes(‘ ‘).

Ex 1:
SQL> insert into student (stunum,stuname,stubranch) values(585,’knreddy’,’cse’);
1 row created
Ex 2:
SQL>insert into student values(&snum,’&stuname,’&stubranch’);
Enter value for stunum: 596
Enter value for stuname:raju
Enter value for stubranch:eee
old 1: insert into student values(&snum,’&stuname,’&stubranch’)
new 1: insert into student values(596,’raju’,’eee’)
1 row created.

DBMS LAB MANUAL KNREDDY

 14

SQL>/

3. Viewing data in the tables / Listingtable rows: - once data has been inserted into a table, the
next most logical operation would be to view what has been inserted.

a) Listingall rows and all columns

Syntax:
SQL> select <column1> to <column n>
2 from tablename;

(or)
SQL> select *
2 from tablename; * astric means all

Filtering table data: - while viewing data from a table, it is rare that all the data from table will be
required each time. Hence, sql must give us a method of filtering out data that is not required data.

a) Selected columns and all rows:
Syntax:
SQL>select <column1>,<column2>
2 from <tablename>;

b) selected rows and all columns:
Syntax:
SQL> select *
 2 from <tablename>
 3 where <condition>;

c) selected columns and selected rows
Syntax:
SQL>select <column1>,<column2>

2 from <tablename>
3 where<condition>;

. Eliminating duplicate rows when using a select statement
Syntax: SQL> select distinct <column> from <tablename>;

 4. Delete operations.
a) remove all rows
Syntax:
SQL>delete from <tablename>;

b) removal of a specified row/s

Syntax:
SQL>delete from <tablename>

2 where <condition>;

DBMS LAB MANUAL KNREDDY

 15

 5. Updating the contents of a table.

a) updating all rows
Syntax:
SQL>update <tablename>
2 set <column>=<exp>;

b) updating seleted records.
Syntax:
SQL>update <tablename>
2 set <column>=<exp>,
3 where <condition>;

6. Modifying the structure of tables.

a) add new columns
Syntax:
SQL>Alter table <tablename>
2 add(<new column> <datatype(size),<newcolumn>datatype(size));
Ex:
SQL>alter table student add(location char(8));

b) Dropping a column from a table.
Syntax:
SQL>alter table <tablename> drop column <col>;
Ex:
SQL> alter table emp drop column sal;

c). Modifying existing columns.
Syntax:
SQL>alter table <tablename> modify(<column> <newdatatype>(<newsize>));
Ex:
SQL>alter table student modify(stuname varchar2(15));

Restrictions on alter table:
The following tasks cannot be performed when using the ALTER TABLE clause:
- change the name of table
- change the name of column
-decrease the size of a column if table data exists

 7. Renaming the tables

Syntax:
SQL> Rename <oldtable> to <new table>;

Ex:
SQL> rename student to student;

DBMS LAB MANUAL KNREDDY

 16

8. Truncating the tables.
 Truncate table empties a table completely.
 Equivalent to DELETE command for deleting all rows
Syntax:
SQL>truncate table <tablename>;
Ex:
SQL>trunc table student1;
(or)
SQL> truncate table studetn1;

9. Destroying tables.
 Completely destroys/drops the table
Syntax:
SQL>drop table <tablename>;
Ex:
SQL> drop table student;

 10. Sorting data in a table.
 The rows retrived from the table will be sorted in either ascending or descending order
Syntax:
SQL> select *

2 from <tablename>
3 order by <columnname> <[sortorder]>;

If sort order is mentioned as DESC(descending), it sorts in descending order.
The default sort is ascending order

11. Creating a table from a table
Syntax:
SQL> create table <table name>(<column1>,<column2>)
 2 as selected <column1>,<column2>
 3 from <table name>;
12. Finding out the table created by a user:
Syntax:
SQL> select * from tab;

For Saving the data use the following command immediately after every login
SQL> set autocommit on;

Difference between TRUNCATE and DELETE statement:

• TRUNCATE is a DDL statement whereas DELETE is a DML statement
• TRUNCATE deletes all records from the table whereas DELETE can also be used to

selectively delete records fro a table using WHERE clause
• TRUNCATE releases the memory occupied by the records of the table whereas DELETE

does not do so
• Data removed using TRUNCATE cannot be recovered whereas data removed using

DELETE can be recovered (using ROLL BACK, a DCL statement).

DBMS LAB MANUAL KNREDDY

 17

SQL CONSTRAINTS

Types of data constraints.

a) Not Null constraint ensures that a column does not accept nulls.

Syntax:Not null constraint at column level
<column> <datatype>(size) not null;

b) Unique Constraint ensures that all values in a column are unique.

Syntax:
Unique constraint at column level.
<column> <datatype>(size)unique;

unique constraint at table level:
Syntax:
SQL>create table <tablename>(<column format> ,unique(<column1>,<column2>);

c) Primary Key constraint

Syntax: at column level
<column> <datatype>(size)primary key;

at table level.
SQL> create table <tablename>(<column format> ,primary key(column1>,<column2>);

d) Foreign Key constraint

Syntax:
at column level.
<column> <datatype>(size>) references <tablename>[<column>];

Syntax: at table level
SQL>create table <tablename>(<column format>,foreign key(<column1>) references
<tablename>[(<column>)

e) Check constraint: is used to validate data when an attribute value is entered . The CHECK
constraint does precisely what its name suggests: it checks to see that a specified condition exists.

Syntax:

<column> <datatype>(size) check(<logical expression>)

DBMS LAB MANUAL KNREDDY

 18

Example-SQL constraints:
1. Create a table emp (empname varchar2 notnull;empnum number unique;empsal number check

empsal>10000);
SQL>create table emp(empname varchar2(15) not null,

2 empnum number(5) unique,
3 empsal number(10) check(empsal > 10000));

2. Write the relational scheme of emp table

SQL>desc emp;

Name Null? Type
EMPNAME NOT NULL VARCHAR2(15)
EMPNUM NUMBER(5)
EMPSAL NUMBER(10)

3. Insert at least 3 rows in to emp table
SQL>insert into emp values('&empname',&empnum,&empsal);
Enter value for empname: knreddy
Enter value for empnum: 250
Enter value for empsal: 30000
old 1 : insert into emp values('&empname',&empnum,&empsal)
new 1:insert into emp values(‘knreddy’,250,30000)

1 row created.
SQL>/
Enter value for empname: raju
Enter value for empnum: 252
Enter value for empsal: 20000
old 1 : insert into emp values('&empname',&empnum,&empsal)
new 1:insert into emp values(‘raju’,252,20000)

1 row created.
SQL>/
Enter value for empname: ajay
Enter value for empnum: 256
Enter value for empsal: 25000
old 1 : insert into emp values('&empname',&empnum,&empsal)
new 1:insert into emp values(‘ajay’,256,25000)

1 row created.

4. Query the table values
SQL>select * from emp;

EMPNAME EMPNUM EMPSAL
---------------------- -------------- ----------------
knreddy 250 30000
raju 252 20000
ajay 256 25000

DBMS LAB MANUAL KNREDDY

 19

5. Insert rows that violate constraints and write the error messages.

SQL> insert into emp values('&empname',&empnum,&empsal);
Enter value for empname: ravi
Enter value for empnum: 250
Enter value for empsal: 20000
old 1 : insert into emp values('&empname',&empnum,&empsal)
new 1:insert into emp values(‘ravi’,250,20000)
insert into emp values(‘ravi’,250,20000)

 *
 ERROR at line 1:

ORA-00001: unique constraint (SYSTEM.SYS_C003996) violated

SQL> insert into emp values('&empname',&empnum,&empsal);
Enter value for empname:
Enter value for empnum: 259
Enter value for empsal: 20000
old 1 : insert into emp values('&empname',&empnum,&empsal)
new 1:insert into emp values(‘ ’,259,20000)
insert into emp values(‘ ’,259,20000)

 *
 ERROR at line 1:
 ORA-01400:cannot insert NULL into (“SYSTEM”.”EMP” .”EMPNAME”)

SQL>insert into emp values('&empname',&empnum,&empsal);
Enter value for empname: rajanna
Enter value for empnum: 254
Enter value for empsal: 9000
old 1 : insert into emp values('&empname',&empnum,&empsal)
new 1:insert into emp values(‘rajanna’,254,9000)
insert into emp values(‘rajanna’,254,9000)
*
ERROR at line 1:
ORA-02290: CHECK CONSTRAINT(SYSTEM.SYS_C003995) violated

DBMS LAB MANUAL KNREDDY

 20

EXCERSE-1

WRITE SQL QUERIES AND THE CORRESPONDING OUTPUT FOR THE FOLLOWING
QUESTIONS:

1) Create a table CLASS the following schema.

class(stunum: number,stuname:varchar2,stubranch:varchar2,stumarks)
Apply the following constraints to the class table while creating the table.

• stunum is unique – use UNIQUE constraint
• stuname should not be a null value—use NOT NULL constraint
• stubranch should contain only cse,ece,eee,civil,mechanical(i.e, the

column should not allow other than these branches)-use CHECK
consrtaint

• stumarks should not exceed 100—use CHECK constraint

2) Give the relational schema of the class table
3) Insert at least 10 rows to the class table
4) Query all the values of class table
5) Find the stunum,stuname whose branch is cse
6) Find students who had secured more than 85 marks
7) Add AGE,LOCATION column to the class table
8) Query the values of table at this moment
9) Set the location of cse students as nandyal, ece students as kurnool, eee students as kadapa,civil

students as allagadda,mechanical students as proddatur
10) Set the age of all students as 19
11) Query the values of table at this moment.
12) Find the students of kadapa
13) Delete students who belong to allagadda.
14) Delete age column
15) Write the error message trying to insert a student detail with same stunum
16) Query the values of the table at this moment.

1. SQL> create table class(stunum number(10) unique,
2 stuname varchar2(15) not null,
3 stubranch varchar2(10) check (stubranch in('cse','ece','eee','civil','mechanical')),
4 stumarks number(3) check(stumarks < 100));

Table created.

2. SQL>desc class;
Name Null? Type
 --- -------- ---

 STUNUM NUMBER(10)
 STUNAME NOT NULL VARCHAR2(15)
 STUBRANCH VARCHAR2(10)
 STUMARKS NUMBER(3)

DBMS LAB MANUAL KNREDDY

 21

3. SQL> insert into class values(&stunum,'&stuname','&stubranch',&stumarks);
Enter value for stunum: 1
Enter value for stuname: abhi
Enter value for stubranch: cse
Enter value for stumarks: 90
old 1: insert into class values(&stunum,'&stuname','&stubranch',&stumarks)
new 1: insert into class values(1,'abhi','cse',90)

1 row created.

SQL> /
Enter value for stunum: 2
Enter value for stuname: balu
Enter value for stubranch: ece
Enter value for stumarks: 90
old 1: insert into class values(&stunum,'&stuname','&stubranch',&stumarks)
new 1: insert into class values(2,'balu','ece',90)

1 row created.

SQL> /
Enter value for stunum: 3
Enter value for stuname: chandra
Enter value for stubranch: cse
Enter value for stumarks: 85
old 1: insert into class values(&stunum,'&stuname','&stubranch',&stumarks)
new 1: insert into class values(3,'chandra','cse',85)

SQL> /
Enter value for stunum: 4
Enter value for stuname: deva
Enter value for stubranch: cse
Enter value for stumarks: 90
old 1: insert into class values(&stunum,'&stuname','&stubranch',&stumarks)
new 1: insert into class values(4,'deva','cse',90)

1 row created.

SQL> /
Enter value for stunum: 5
Enter value for stuname: eswar
Enter value for stubranch: eee
Enter value for stumarks: 85
old 1: insert into class values(&stunum,'&stuname','&stubranch',&stumarks)
new 1: insert into class values(5,'eswar','eee',85)

1 row created.

DBMS LAB MANUAL KNREDDY

 22

SQL> /
Enter value for stunum: 6
Enter value for stuname: naresh
Enter value for stubranch: ece
Enter value for stumarks: 80
old 1: insert into class values(&stunum,'&stuname','&stubranch',&stumarks)
new 1: insert into class values(6,'naresh','ece',80)

1 row created.

SQL> /
Enter value for stunum: 7
Enter value for stuname: ganesh
Enter value for stubranch: mechanical
Enter value for stumarks: 80
old 1: insert into class values(&stunum,'&stuname','&stubranch',&stumarks)
new 1: insert into class values(7,'ganesh','mechanical',80)

1 row created.

SQL> /
Enter value for stunum: 8
Enter value for stuname: mahesh
Enter value for stubranch: civil
Enter value for stumarks: 80
old 1: insert into class values(&stunum,'&stuname','&stubranch',&stumarks)
new 1: insert into class values(8,'mahesh','civil',80)

1 row created.

SQL> /
Enter value for stunum: 9
Enter value for stuname: jagadesh
Enter value for stubranch: civil
Enter value for stumarks: 80
old 1: insert into class values(&stunum,'&stuname','&stubranch',&stumarks)
new 1: insert into class values(9,'jagadesh','civil',80)

1 row created.

SQL> /
Enter value for stunum: 10
Enter value for stuname: karthik
Enter value for stubranch: cse
Enter value for stumarks: 85
old 1: insert into class values(&stunum,'&stuname','&stubranch',&stumarks)
new 1: insert into class values(10,'karthik','cse',85)

1 row created.

DBMS LAB MANUAL KNREDDY

 23

4. SQL> select *
 2 from class;

 STUNUM STUNAME STUBRANCH STUMARKS
---------- --------------- ---------- ------------------------- ------------------------
 1 abhi cse 90
 2 balu ece 90
 3 chandra cse 85
 4 deva cse 90
 5 eswar eee 85
 6 naresh ece 80
 7 ganesh mechanical 80
 8 mahesh civil 80
 9 jagadesh civil 80
 10 karthik cse 85

10 rows selected.

5. SQL> select stunum, stuname
2 from class
3 where stubranch='cse';

 STUNUM STUNAME

---------- ----------------------
 1 abhi

 3 chandra
 4 deva
 10 karthik

6. SQL> select *
 2 from class

 3 where stumarks>85;

 STUNUM STUNAME STUBRANCH STUMARKS

--------------- ------------------- ----------------- ---------------------
 1 abhi cse 90
 2 balu ece 90
 4 deva cse 90

7. SQL> alter table class
 2 add(age number(2), location varchar2(10));

Table altered.

8. SQL> select *
2 from class;

DBMS LAB MANUAL KNREDDY

 24

 STUNUM STUNAME STUBRANCH STUMARKS AGE LOCATION
------------ ---------------- ------------------------ ------------------ ---------- -------------------

 1 abhi cse 90
 2 balu ece 90
 3 chandra cse 85
 4 deva cse 90
 5 eswar eee 85
 6 naresh ece 80
 7 ganesh mechanical 80
 8 mahesh civil 80
 9 jagadesh civil 80
 10 karthik cse 85
10 rows selected.

9. SQL> update class
 2 set location='nandyal'
 3 where stubranch='cse';

4 rows updated.

SQL> update class

2 set location='kurnool'
3 where stubranch='ece';

2 rows updated.

SQL> update class
 2 set location='kadapa'

 3 where stubranch='eee';

1 row updated.

SQL> update class
 2 set location='allagadda'
 3 where stubranch='civil';

2 rows updated.

SQL> update class
 2 set location='proddatur'
 3 where stubranch='mechanical';

1 row updated.

10. SQL> update class
1 set age=19;

10 rows updated.

DBMS LAB MANUAL KNREDDY

 25

11. SQL> select *
2 from class;

 STUNUM STUNAME STUBRANCH STUMARKS AGE LOCATION
 ------------ --------------- -------------------- ------------------- ---------- --------------

 1 abhi cse 90 19 nandyal
 2 balu ece 90 19 kurnool

 3 chandra cse 85 19 nandyal
 4 deva cse 90 19 nandyal

 5 eswar eee 85 19 kadapa
 6 naresh ece 80 19 kurnool
 7 ganesh mechanical 80 19 proddatur
 8 mahesh civil 80 19 allagadda
 9 jagadesh civil 80 19 allagadda
 10 karthik cse 85 19 nandyal

10 rows selected.

12. SQL> select *

 2 from class
 3 where location='kadapa';

 STUNUM STUNAME STUBRANCH STUMARKS AGE LOCATION
 ----------- --------------- ------------------- ----------------- ----------- -----------------
 5 eswar eee 85 19 kadapa

13. SQL> delete class

 2 where location='allagadda';

2 rows deleted.

14. SQL> alter table class
 2 drop column age;

 Table altered.

15. SQL> insert into class values(3,'knreddy','cse','nandyal');
insert into class values(3,'knreddy','cse','nandyal')
*
ERROR at line 1:
ORA-00001: unique constraint (SYSTEM.SYS_C003997) violated

DBMS LAB MANUAL KNREDDY

 26

16. SQL> select *
 2 from class;

 STUNUM STUNAME STUBRANCH STUMARKS LOCATION
 ------------ --------------- ------------------- ------------------- ----------------
 1 abhi cse 90 nandyal
 2 balu ece 90 kurnool
 3 chandra cse 85 nandyal
 4 deva cse 90 nandyal
 5 eswar eee 85 kadapa
 6 naresh ece 80 kurnool
 7 ganesh mechanical 80 proddatur
 10 karthik cse 85 nandyal

8 rows selected.

DBMS LAB MANUAL KNREDDY

 27

OPERATORS IN SQL

COMPARISON OPERATORS:
 SQL provides the following comparison operators

Symbol Meaning
= Equal to
< Less than
<= Less than or equal to
> Greater than
>= Greater than or equal to
< > or ! = Not equal to

ARITHMETIC OPERATORS:
 SQL provides the following arithmetic operators. We can use arithmetic operators with
table attributes in a column list or in a conditional expression.

Arithmetic
operator

Description

+ Add
- Subtract
* Multiply
/ Divide
^ Raise to the power of (some

application use ** instead of ^)

LOGICAL OPERATORS:
SQL allows having multiple conditions in a query through the use of logical operators. The
logical operators are: AND, OR, NOT .The logical operators are used to connect the
Boolean expressions in the where clause.

SPECIAL OPERATORS:
ANSI –standard SQL allows the use of special operators in conjunction with the WHERE
clause. These special operators include:
BETWEEN: used to check whether an attribute value is within a range.
IS NULL: used to check whether an attribute value is null.
IN: used to check whether an attribute value matches any value within a value list.
EXISTS: used to check whether a sub query returns any rows.
LIKE: used to check whether an attribute value matches a given string pattern.
 The LIKE special operator is used in conjunction with wildcards to find patterns
within string attributes. Standard SQL allows to use the percent sign (%) and underscore (_)
wildcard characters to make matches when the entire string is not known:

 % Means any and all following or preceding characters are eligible. For example ‘J%’
includes Johnson, James, and July. ‘Jo %’ includes Johnson, Jones. ‘%n ‘includes
Johnson, Jagan, Kiran.

 _ means any one character may be substituted for the underscore

DBMS LAB MANUAL KNREDDY

 28

 AGGREGATE FUNCTIONS:
 SQL can perform various mathematical summaries, such as counting the number of
rows that contain a specified condition, finding the minimum or maximum values for some
specified attribute, summing and averaging the values in a specified column.
 Some basic SQL aggregate functions:

Function Output
COUNT The number of rows containing non-null values.
MIN The minimum attribute value encountered in a given column
MAX The maximum attribute value encountered in a given column
SUM The sum of all values for a given column
AVG The arithmetic mean(average) for a specified column

GROUPING DATA:
Frequency distribution can be created quickly and easily using the GROUP BY clause within
the SELECT statement. The syntax is:

 SELECT column list
 FROM table list
 [WHERE condition list]
 [GROUP BY column list]
 [HAVING condition list]
 [ORDER BY column list [ASC|DESC]];

 The GROUP BY clause is generally used when you have attributes columns combined with
aggregate functions in the SELECT statement.
 The GROUP BY clause is valid only when used in conjunction with one of the SQL aggregate
functions such as COUNT, MIN, MAX, AVG and SUM.

EXAMPLE-SQL OPERATORS

CONSIDER THE FOLLOWING EMPLOYEE TABLE AND WRITE THE QUERIES AND
CORRESPONDING RESULT FOR EACH QUERY.

EMPLOYEE

EMP_NUM EMP_NAME JOB_TYPE HIREDATE EMP_SAL EMP_LOC

 1001 KRISHNA MANAGER 01-JAN-2011 50000 NANDYAL
 1002 CLERK 01-JAN-2011 15000 KURNOOL
 1003 RAM CLERK 16-AUG-2011 15000 NANDYAL
 1004 MAHESH ASSTMANAGER 03-MAY-2011 35000 HYDERABAD
 1005 VIGNESH ACCOUNTANT 01-JAN-2011 20000 KADAPA
 1006 NAGENDRA MECHANIC 01-JAN-2011 10000 KADAPA
 1007 KIRAN CLERK 08-JUN-2011 15000 HYDERABAD
 1008 LOKESH ATTENDER 01-JAN-2011 12000 KURNOOL
 1009 MOHAN ATTENDER 16-AUG-2011 12000 KADAPA
 1010 PRAVEEN ADMINOFFICER 02-JAN-2011 40000 NANDYAL

DBMS LAB MANUAL KNREDDY

 29

1. Find the employee whose salary is greater than 25000

2. Find the name of employees whose salary is 50000

3. Find the employee who is manager and belongs to nandyal

4. Find the employee who are either manager or belongs to nandyal

5. Find employee whose salary is not less than 20000

6. Find employee whose salary is in between 20000 and 40000

7. Find the name and location of employee who location is nandyal or kurnool

8. Find the rows from employee table whose EMP_NAME column values are null

9. Find the name of employees whose name starts with ‘k’

10. Find the name of employees whose name ends with ‘esh’

11. Find the name of employees in which the second character is ‘a’

12. Find number of employees.

13. Find minimum salary of the employee

14. Find maximum salary of the employee

15. Find total salary of all employees

16. Find the average salary of the employees

17. Find number of different jobs in the company

18. Find employees whose salary is less than average salary

19. What is the output of the following query:

 SQL> SELECT EMP_NAME, EMP_LOC

 FROM EMPLOYEE

GROUP BY EMP_LOC;

20. Find the number of employees for each job

21. What is the maximum salary for each job

22. Find the number of each job and name the column that gives number of jobs as jobnum

23. Find the number of employees of each location

24. Find the name and salary of the employee with maximum salary

25. Find the count of employees for each job so that at least two of the employees had salary

greater than 10000

DBMS LAB MANUAL KNREDDY

 30

1. Find the employee whose salary is greater than 25000
SQL> select *
 2 from employee
 3 where emp_sal> 25000;

 EMP_NUM EMP_NAME JOB_TYPE HIREDATE EMP_SAL EMP_LOC
--------------- ------------------- ------------ --------- ---------- ---------------------------------------
 1001 krishna manager 01-JAN-11 50000 nandyal
 1004 mahesh asstmanager 03-MAY-11 35000 hyderabad
 1010 praveen adminofficer 02-JAN-11 40000 nandyal

2. Find the name of employees whose salary is 50000
SQL> select emp_name
 2 from employee
 3 where emp_sal=50000;

EMP_NAME

krishna

3. Find the employee who is manager and belongs to nandyal
SQL>select *

 2 from employee
 3 where job_type='manager' and emp_loc='nandyal';

 EMP_NUM EMP_NAME JOB_TYPE HIREDATE EMP_SAL EMP_LOC

---------------- ------------------ ---------------- ------------------ ------------- --------------
 1001 krishna manager 01-JAN-11 50000 nandyal

4. Find the employee who are either manager or belongs to nandyal
SQL> select *
 2 from employee
 3 where job_type='manager' or emp_loc='nandyal';
 EMP_NUM EMP_NAME JOB_TYPE HIREDATE EMP_SAL EMP_LOC
---------------- ------------------ ------------------ ----------------- ------------ ----------------
 1001 krishna manager 01-JAN-11 50000 nandyal
 1003 ram clerk 16-AUG-11 15000 nandyal
 1010 praveen adminofficer 02-JAN-11 40000 nandyal

5. Find employee whose salary is not less than 20000
SQL> select *
 2 from employee

3 where not(emp_sal<20000);

(or)

 SQL> select *
 2 from employee
 3 where emp_sal>=20000;

DBMS LAB MANUAL KNREDDY

 31

 EMP_NUM EMP_NAME JOB_TYPE HIREDATE EMP_SAL EMP_LOC
---------------- ------------------ ----------------- ----------------- ------------- ------------
 1001 krishna manager 01-JAN-11 50000 nandyal
 1004 mahesh asstmanager 03-MAY-11 35000 hyderabad
 1005 vignesh accountant 01-JAN-11 20000 kadapa
 1010 praveen adminofficer 02-JAN-11 40000 nandyal

6. Find employee whose salary is in between 20000 and 40000
SQL> select *
 2 from employee
 3 where emp_sal between 20000 and 40000;

 EMP_NUM EMP_NAME JOB_TYPE HIREDATE EMP_SAL EMP_LOC
--------------- --------------------- ----------------- ----------------- -------------- ---------------
 1004 mahesh asstmanager 03-MAY-11 35000 hyderabad
 1005 vignesh accountant 01-JAN-11 20000 kadapa
 1010 praveen adminofficer 02-JAN-11 40000 nandyal

7. Find the name and location of employee who location is nandyal or Kurnool
SQL> select *
 2 from employee
 3 where emp_loc in('nandyal','kurnool');

(or)

SQL> select *
 2 from employee
 3 where emp_loc='nandyal' or emp_loc='kurnool';

 EMP_NUM EMP_NAME JOB_TYPE HIREDATE EMP_SAL EMP_LOC
--------------- ------------------- ----------------- ---------------- ------------- ------------
 1001 krishna manager 01-JAN-11 50000 nandyal
 1002 clerk 01-JAN-11 15000 kurnool
 1003 ram clerk 16-AUG-11 15000 nandyal
 1008 lokesh attender 01-JAN-11 12000 kurnool
 1010 praveen adminofficer 02-JAN-11 40000 nandyal

8. Find the rows from employee table whose EMP_NAME column values are null
SQL> select *
 2 from employee
 3 where emp_name is null;

 EMP_NUM EMP_NAME JOB_TYPE HIREDATE EMP_SAL EMP_LOC
------------------ ------------------- ---------------- --------------- -------------- ---------------
 1002 clerk 01-JAN-11 15000 kurnool

DBMS LAB MANUAL KNREDDY

 32

9. Find the name of employees whose name starts with ‘k’
SQL> select emp_name
 2 from employee
 3 where emp_name like 'k%';

EMP_NAME

krishna
kiran

10. Find the name of employees whose name ends with ‘esh’
SQL> select emp_name
 2 from employee
 3 where emp_name like '%esh';

EMP_NAME

mahesh
vignesh
lokesh

11. Find the name of employees in which the second character is ‘a’
SQL> select emp_name
 2 from employee
 3 where emp_name like '_a%';

EMP_NAME

ram
mahesh
nagendra

12. Find number of employees.
SQL> select count(*)
 2 from employee;

 COUNT(*)

 10

13. Find minimum salary of the employee

SQL> select min(emp_sal)
 2 from employee;

MIN(EMP_SAL)

 10000

DBMS LAB MANUAL KNREDDY

 33

14. Find maximum salary of the employee
SQL> select max(emp_sal)
 2 from employee;

MAX(EMP_SAL)

 50000

15. Find total salary of all employees
SQL> select sum(emp_sal)
 2 from employee;

SUM(EMP_SAL)

 224000

16. Find the average salary of the employees
SQL> select avg(emp_sal)
 2 from employee;

AVG(EMP_SAL)

 22400

17. Find number of different jobs in the company
SQL> select count(distinct job_type)
 2 from employee;

COUNT(DISTINCT JOB_TYPE)

 7

18. Find employees whose salary is less than average salary
SQL> select *
 2 from employee

4 where emp_sal<(select avg(emp_sal)
from employee);

 EMP_NUM EMP_NAME JOB_TYPE HIREDATE EMP_SAL EMP_LOC
--------------- -------------------- ---------------- ------------------ ------------- ------------------
 1002 clerk 01-JAN-11 15000 kurnool
 1003 ram clerk 16-AUG-11 15000 nandyal
 1005 vignesh accountant 01-JAN-11 20000 kadapa
 1006 nagendra mechanic 01-JAN-11 10000 kadapa
 1007 kiran clerk 08-JUN-11 15000 hyderabad
 1008 lokesh attender 01-JAN-11 12000 kurnool
 1009 mohan attender 16-AUG-11 12000 kadapa

7 rows selected.

DBMS LAB MANUAL KNREDDY

 34

19. What is the output of the following query:
 SQL> SELECT EMP_NAME, EMP_LOC
 FROM EMPLOYEE

GROUP BY EMP_LOC;
 select emp_name, emp_loc

 *
 ERROR at line 1:

ORA-00979: not a GROUP BY expression

20. Find the number of employees for each job
SQL> select job_type,count(emp_name)
 2 from employee
 3 group by job_type;

JOB_TYPE COUNT(EMP_NAME)
----------------- ---------------------------
attender 2
asstmanager 1
clerk 2
accountant 1
adminofficer 1
manager 1
mechanic 1

7 rows selected.

21. What is the maximum salary for each job
SQL> select job_type, max(emp_sal)
 2 from employee
 3 group by job_type;

JOB_TYPE MAX(EMP_SAL)
----------------- ----------------------
attender 12000
asstmanager 35000
clerk 15000
accountant 20000
adminofficer 40000
manager 50000
mechanic 10000

7 rows selected.

22. Find the number of each job and name the column that gives number of jobs as jobnum

SQL> select job_type, count(job_type) as jobnum
 2 from employee
 3 group by job_type;

DBMS LAB MANUAL KNREDDY

 35

JOB_TYPE JOBNUM
-------------------- ------------------
attender 2
asstmanager 1
clerk 3
accountant 1
adminofficer 1
manager 1
mechanic 1

7 rows selected.

23. Find the number of employees of each location
SQL> select emp_loc, count(emp_num)
 2 from employee
 3 group by emp_loc;

EMP_LOC COUNT(EMP_NUM)
------------------ ------------------------
hyderabad 2
kadapa 3
nandyal 3
kurnool 2

24. Find the name and salary of the employee with maximum salary
SQL> select emp_name, emp_sal
 2 from employee
 3 where emp_sal=(select max(emp_sal) from employee);

EMP_NAME EMP_SAL
---------------------- --------------
krishna 50000

25. Find the count of employees for each job so that at least two of the employees had salary
greater than 10000

SQL> select job_type ,count(emp_num)

 2 from employee
 3 where emp_sal>10000
 4 group by job_type
 5 having count(emp_num)>=2

JOB_TYPE COUNT(EMP_NUM)
----------------- -------------------------
attender 2
clerk 3

DBMS LAB MANUAL KNREDDY

 36

RELATIONAL SET OPERATORS
SQL provides three set manipulation constructs that extend the basic query
SQL supports three operators under the names UNION, INTERSECTION, MINUS (or)
EXCEPT.
UNION: The UNION statement combines rows from two or more queries without including
duplicate rows.
The syntax of UNION statement is:
 Query
 UNION
 Query
In other words UNION statement combines the output of two SELECT queries.(SELECT
statement must be union compatible)
UNION ALL statement can be used to produce a relation that retains the duplicate rows.

INTERSECT: The INTERSECT statement can be used to combine rows from two queries,
returning only the rows that appear in both sets.
The syntax for the INTERSSECT statement is:
 Query
 INTERSECT
 Query
MINUS (or) EXCEPT: The MINUS statement in SQL combines rows from two queries and
returns only the rows that appear in the first set but not in the second.
The syntax for the minus statement is :
 Query
 MINUS
 Query

Example-SQL set operators:
Consider the following two tables

PRODUCT1 PRODUCT2

P_code P_descript price
123455 Flashlight 10.00
123456 Lamp 25.00
123457 Fan 100.00
123458 Bulb 20.00
123459 Grinder 500.00

1. Combine the data in both the tables using UNION ALL operator
2. Avoid duplicate rows for the above question
3. Find the product descript from the two tables whose price is 500
4. List the common rows in two tables(use INTERECT)
5. List the rows that appear in the product1 table but not in product2 table
6. List the rows that appear in the product2 table but not in product1 table

P_code P_descript price
345678 Oven 1000.00
345679 Mixer 400.00
123459 Grinder 500.00

DBMS LAB MANUAL KNREDDY

 37

1. Combine the data in both the tables using UNION ALL operator
SQL> select *
 2 from product1
 3 UNION ALL
 4 select *
 5 from product2;

 P_CODE P_DESCRIPT PRICE
-------------- --------------------- ------------
 123455 flashlight 10
 123456 lamp 25
 123457 fan 100
 123458 bulb 20
 123459 grinder 500
 345678 oven 1000
 345679 mixer 400
 123459 grinder 500

8 rows selected.

2. Avoid duplicate rows for the above question
SQL> select *
 2 from product1
 3 UNION
 4 select *
 5 from product2;

 P_CODE P_DESCRIPT PRICE
-------------- --------------------- ------------
 123455 flashlight 10
 123456 lamp 25
 123457 fan 100
 123458 bulb 20
 123459 grinder 500
 345678 oven 1000
 345679 mixer 400

7 rows selected.

3. Find the product descript from the two tables whose price is 500
SQL> select p_descript
 2 from product1
 3 where price=500
 4 UNION
 5 select p_descript
 6 from product2
 7 where price=500;
P_DESCRIPT

grinder

DBMS LAB MANUAL KNREDDY

 38

4. List the common rows in two tables(use INTERECT)
SQL> select *
 2 from product1
 3 INTERSECT
 4 select *
 5 from product2;

 P_CODE P_DESCRIPT PRICE
 ----------- ---------------- ----------
 123459 grinder 500

5. List the rows that appear in the product1 table but not in product2 table

SQL> select *
 2 from product1
 3 MINUS
 4 select *
 5 from product2;

 P_CODE P_DESCRIPT PRICE

 ---------- -------------------- -----------
 123455 flashlight 10
 123456 lamp 25
 123457 fan 100
 123458 bulb 20

6. List the rows that appear in the product2 table but not in product1 table
SQL> select *
 2 from product2
 3 MINUS
 4 select *
 5 from product1;

 P_CODE P_DESCRIPT PRICE
 ------------ ------------------ ------------
 345678 oven 1000
 345679 mixer 400

DBMS LAB MANUAL KNREDDY

 39

SQL JOIN OPERATIONS
The relational join operation merges rows from two tables and returns the rows with one of the
following conditions:

• Have common values in common columns(natural join)
• Meet a given join condition(equality or inequality)
• Have a common value in common columns or have no matching values(outer join)

SQL JOIN EXPRESSIN STYLES

JOIN

CLASSIFICATION
JOIN TYPE SQL SYNTAX EXAMPLE DESCRIPTION

CROSS CROSS
JOIN

SELECT *
FROM T1,T2; (old style)

SELECT *
FROM T1 CROSS JOIN T2;

Returns the Cartesian product
of T1 and T2.

INNER Old-style
join

SELECT *
FROM T1,T2
WHERE T1.C1=T2.C1;

Returns only the rows that meet
the join condition in the where
clause (old style).Only the rows
with matching values are
selected.

 NATURAL
JOIN

SELECT *
FROM T1 NATURAL JOIN T2;

Returns only the rows with
matching values in the
matching columns. The
matching columns must have
the same names and similar
data types.

 JOIN
USING

SELECT *
FROM T1 JOIN T2 USING(C1)

Returns only the rows with
matching values in the columns
indicated in the USING clause

 JOIN ON SELECT *
FROM T1 JOIN T2
 ON T1.C1=T2.C1;

Returns only the rows with
matching values in the columns
indicated in the ON clause

OUTER LEFT JOIN SELECT *
FROM T1 LEFT OUTER JOIN T2
ON T1.C1=T2.C1;

Returns rows with matching
values and includes all rows
from the left table (T1) with
unmatched values.

 RIGHT
JOIN

SELECT *
FROM T1 RIGHT OUTER JOIN
T2 ON T1.C1=T2.C1;

Returns rows with matching
values and includes all rows
from the right table (T2) with
unmatched values.

 FULL JOIN SELECT *
FROM T1 FULL OUTER JOIN
T2 ON T1.C1=T2.C1;

Returns rows with matching
values and includes all rows
from both tables (T1and T2)
with unmatched values.

DBMS LAB MANUAL KNREDDY

 40

Consider the tables CUSTOMER and AGENT; perform different SQL join operations and write
corresponding results
CUSTOMER AGENT

CROSS JOIN:
SQL> select * (old style)
 2 from customer,agent;
 CUS_CODE CUS_NAME CUS_ZIP AGENT_CODE AGENT_CODE AGENT_PHONE
 -------------- ----------------- --------------- ----------------- -------------------- ---------------------
 1132445 w 145 231 125 9985707288
 1217782 a 145 125 125 9985707288
 1312243 ra 129 167 125 9985707288
 1321242 ro 134 125 125 9985707288
 1542311 s 134 421 125 9985707288
 1657399 v 145 231 125 9985707288
 1132445 w 145 231 167 8985291308
 1217782 a 145 125 167 8985291308
 1312243 ra 129 167 167 8985291308
 1321242 ro 134 125 167 8985291308
 1542311 s 134 421 167 8985291308

 CUS_CODE CUS_NAME CUS_ZIP AGENT_CODE AGENT_CODE AGENT_PHONE
 -------------- ----------------- --------------- ----------------- ------------------- ---------------------
 1657399 v 145 231 167 8985291308
 1132445 w 145 231 231 9885434311
 1217782 a 145 125 231 9885434311
 1312243 ra 129 167 231 9885434311
 1321242 ro 134 125 231 9885434311
 1542311 s 134 421 231 9885434311
 1657399 v 145 231 231 9885434311
 1132445 w 145 231 333 9704128379
 1217782 a 145 125 333 9704128379
 1312243 ra 129 167 333 9704128379
 1321242 ro 134 125 333 9704128379

 CUS_CODE CUS_NAME CUS_ZIP AGENT_CODE AGENT_CODE AGENT_PHONE
 ------------ ----------------- ------------- ------------------- ------------------- ----------------------
 1542311 s 134 421 333 9704128379
 1657399 v 145 231 333 9704128379

24 rows selected.

AGENT_CODE AGENT_PHONE

125 9985707288
167 8985291308
231 9885434311
333 9704128379

CUS_CODE CUS_NAME CUS_ZIP AGENT_CODE
1132445 W 145 231
1217782 A 145 125
1312243 Ra 129 167
1321242 Ro 134 125
1542311 S 134 421
1657399 V 145 231

DBMS LAB MANUAL KNREDDY

 41

 SQL> select *
 2 from customer cross join agent;
This query also results the values same as the above query which is the old style

INNER JOINS

Old-style join :
SQL> select *
 2 from customer,agent
 3 where customer.agent_code=agent.agent_code;

 CUS_CODE CUS_NAME CUS_ZIP AGENT_CODE AGENT_CODE AGENT_PHONE
 -------------- --------------- ----------- ------------------- ------------------ -------------------
 1132445 w 145 231 231 9885434311
 1217782 a 145 125 125 9985707288
 1312243 ra 129 167 167 8985291308
 1321242 ro 134 125 125 9985707288
 1657399 v 145 231 231 9885434311

NATURAL JOIN:
SQL> select *
 2 from customer natural join agent;

AGENT_CODE CUS_CODE CUS_NAME CUS_ZIP AGENT_PHONE
 ----------------- --------------- --------------- ------------ --------------------
 231 1132445 w 145 9885434311
 125 1217782 a 145 9985707288
 167 1312243 ra 129 8985291308
 125 1321242 ro 134 9985707288
 231 1657399 v 145 9885434311

JOIN USING
SQL> select *
 2 from customer join agent using(agent_code);

AGENT_CODE CUS_CODE CUS_NAME CUS_ZIP AGENT_PHONE
 ----------------- --------------- --------------- ------------ --------------------
 231 1132445 w 145 9885434311
 125 1217782 a 145 9985707288
 167 1312243 ra 129 8985291308
 125 1321242 ro 134 9985707288
 231 1657399 v 145 9885434311

DBMS LAB MANUAL KNREDDY

 42

JOIN ON
SQL> select *
 2 from customer join agent on customer.agent_code=agent.agent_code;

CUS_CODE CUS_NAME CUS_ZIP AGENT_CODE AGENT_CODE AGENT_PHONE
 -------------- --------------- ----------- ------------------- ------------------ -------------------
 1132445 w 145 231 231 9885434311
 1217782 a 145 125 125 9985707288
 1312243 ra 129 167 167 8985291308
 1321242 ro 134 125 125 9985707288
 1657399 v 145 231 231 9885434311

 OUTER JOIN

LEFT OUTER JOIN:
SQL> select *
 2 from customer left outer join agent on customer.agent_code=agent.agent_code;

 CUS_CODE CUS_NAME CUS_ZIP AGENT_CODE AGENT_CODE AGENT_PHONE
---------------- ------------------- ------------ ------------------ ------------------- ---------------------
 1321242 ro 134 125 125 9985707288
 1217782 a 145 125 125 9985707288
 1312243 ra 129 167 167 8985291308
 1657399 v 145 231 231 9885434311
 1132445 w 145 231 231 9885434311
 1542311 s 134 421

6 rows selected.

RIGHT OUTER JOIN
SQL> select *
 2 from customer right outer join agent on customer.agent_code=agent.agent_code;

 CUS_CODE CUS_NAME CUS_ZIP AGENT_CODE AGENT_CODE AGENT_PHONE
 ---------------- ------------------- ------------ ------------------ ------------------- -----------------------
 1132445 w 145 231 231 9885434311
 1217782 a 145 125 125 9985707288
 1312243 ra 129 167 167 8985291308
 1321242 ro 134 125 125 9985707288
 1657399 v 145 231 231 9885434311
 333 9704128379

6 rows selected.

DBMS LAB MANUAL KNREDDY

 43

FULL OUTER JOIN

SQL> select *
 2 from customer full outer join agent on customer.agent_code=agent.agent_code;

 CUS_CODE CUS_NAME CUS_ZIP AGENT_CODE AGENT_CODE AGENT_PHONE
 ---------------- ------------------- ------------ ------------------ ------------------- -----------------------
 1321242 ro 134 125 125 9985707288
 1217782 a 145 125 125 9985707288
 1312243 ra 129 167 167 8985291308
 1657399 v 145 231 231 9885434311
 1132445 w 145 231 231 9885434311
 1542311 s 134 421
 333 9704128379

7 rows selected.

Note:
We can use USING clause for the outer joins instead of ON.
If ON condition is used the output includes the same columns in two tables twice in the result
If USING clause is used the column appears once in the result

DBMS LAB MANUAL KNREDDY

 44

EXERCICISE

Consider the following relational schema & instances:

Sailors (sid: integer, sname: string, rating: integer, age: real)

Boats (bid: integer, bname: string)

Reserves (sid: integer, bid: integer, day: date)

SAILORS RESERVES

BOATS
bid bname color
101 interlake blue
102 interlake red
103 clipper green
104 marine red

sid sname rating age

22 dinesh 7 45.0

29 bramha 1 33.0

31 lokesh 8 55.5

32 akash 8 25.5

58 ramesh 10 35.0

64 hari 7 35.0

71 Mahesh 10 16.0

74 hari 9 35.0

85 abhi 3 25.5

95 boby 3 63.5

sid bid day

22 101 10-oct-98

22 102 10-oct-98

22 103 10-oct-98

22 104 10-jul-98

31 102 11-oct-98

31 103 11-jun-98

31 104 11-dec-98

64 101 9-may-98

64 102 9-aug-98

74 103 9-aug-98

DBMS LAB MANUAL KNREDDY

 45

Write the SQL queries and their corresponding results for the following:

1. Find the names and ages of all sailors
2. Find all sailors with a rating above 7
3. Find the names of sailors who have reserved boat number 103
4. Find the sid’s of sailors who have reserved a red boat
5. Find the names of sailors who have reserved a red boat
6. Find the colors of boats reserved by lokesh
7. Find the names of sailors who have reserved at least one boat
8. Find the name and age of sailors whose name begin with ‘b’ and ends with ‘y’ and has at least

three characters.

UNION, INTERSECT, MINUS
9. Find the names of sailors who have reserved a red or a green boat
10. Find the names of sailors who have reserved both a red and a green boat
11. Find the sid’s of all sailors who have reserved red boats but not green boats
12. Find all sid’s of sailors who have a rating of 10 or reserved boat 104

NESTED QUERIES:

13. Find the names of sailors who have reserved boat 103
14. Find the names of sailors who have reserved a red boat
CORRELATED NESTED QUERIES:

15. Find the names of sailors who have reserved boat number 103

SET COMPARISON OPERATORS:

16. Find sailors whose rating is better than some sailor called hari
17. Find the sailor with the highest rating
18. Find the name of sailors who have reserved both a red and a green boat
19. Find the names of sailors who have reserved all boats

AGGREGATE OPERATORS:

20. Find the average age of sailors with a rating of 10
21. Find the name and age of the oldest sailor
22. Count the number of sailors
23. Count the number of different sailor names
24. Find the names of sailors who are older than the oldest sailor with a rating of 10

GROUP BY CLAUSE:

25. Find the age of the youngest sailor for each rating level
26. Find the age of the youngest sailor who is eligible to vote(i.e., is at least 18 years old) for each

rating level with at least two such sailors
27. For each red boat find the number of reservations for this boat
28. Find the average age of sailors for each rating level that has at least two sailors

DBMS LAB MANUAL KNREDDY

 46

1. Find the names and ages of all sailors
SQL> select s.sname,s.age
 2 from sailors s;
SNAME AGE
--------------- ------------------
dinesh 45
bramha 33
lokesh 55.5
akash 25.5
ramesh 35
hari 35
mahesh 16
hari 35
abhi 25.5
boby 63.5

10 rows selected.
The same query with DISTINCT clause results different.
SQL> select distinct s.sname, s.age
 2 from sailors s;
SNAME AGE
--------------- ------------
mahesh 16
boby 63.5
abhi 25.5
bramha 33
ramesh 35
hari 35
akash 25.5
dinesh 45
lokesh 55.5

9 rows selected.

2. Find all sailors with a rating above 7
SQL> select *
 2 from sailors;
 SID SNAME RATING AGE
---------- --------------- ------------- ----------
 22 dinesh 7 45
 29 bramha 1 33
 31 lokesh 8 55.5
 32 akash 8 25.5
 58 ramesh 10 35
 64 hari 7 35
 71 mahesh 10 16
 74 hari 9 35
 85 abhi 3 25.5
 95 boby 3 63.5
10 rows selected.

DBMS LAB MANUAL KNREDDY

 47

3. Find the names of sailors who have reserved boat number 103
SQL> select s.sname
 2 from sailors s, reserves r
 3 where s.sid=r.sid and r.bid=103;

SNAME

dinesh
lokesh
hari

4. Find the sid’s of sailors who have reserved a red boat
SQL> select r.sid
 2 from boats b, reserves r
 3 where b.bid=r.bid and b.color='red';

 SID

 22
 22
 31
 31
 64

5. Find the names of sailors who have reserved a red boat
SQL> select s.sname
 2 from sailors s, reserves r, boats b
 3 where s.sid=r.sid and r.bid =b.bid and b.color='red';

SNAME

dinesh
dinesh
lokesh
lokesh
hari

6. Find the colors of boats reserved by lokesh
SQL> select b.color
 2 from sailors s, reserves r, boats b
 3 where s.sid=r.sid and r.bid =b.bid and s.sname='lokesh';

COLOR

red
green
red

DBMS LAB MANUAL KNREDDY

 48

7. Find the names of sailors who have reserved at least one boat
SQL> select s.sname
 2 from sailors s, reserves r
 3 where s.sid=r.sid;

SNAME

dinesh
dinesh
dinesh
dinesh
lokesh
lokesh
lokesh
hari
hari
hari

10 rows selected.

8. Find the name and age of sailors whose name begin with ‘b’ and ends with ‘y’ and has at least
three characters.
SQL> select s.sname, s.age
 2 from sailors s
 3 where s.sname like 'b_%y';

SNAME AGE
--------------- ----------
boby 63.5

UNION, INTERSECT, MINUS
9. Find the names of sailors who have reserved a red or a green boat

SQL> select s.sname
 2 from sailors s, reserves r, boats b
 3 where s.sid=r.sid and r.bid=b.bid and b.color='red'
 4 union
 5 select s2.sname
 6 from sailors s2, reserves r2, boats b2
 7 where s2.sid=r2.sid and r2.bid=b2.bid and b2.color='green';

SNAME

dinesh
hari
lokesh

DBMS LAB MANUAL KNREDDY

 49

10. Find the names of sailors who have reserved both a red and a green boat

SQL> select s.sname
 2 from sailors s, reserves r, boats b
 3 where s.sid=r.sid and r.bid=b.bid and b.color='red'
 4 intersect
 5 select s2.sname
 6 from sailors s2, reserves r2, boats b2
 7 where s2.sid=r2.sid and r2.bid=b2.bid and b2.color='green';

SNAME

dinesh
hari
lokesh

11. Find the sid’s of all sailors who have reserved red boats but not green boats

SQL> select s.sid
 2 from sailors s, reserves r,boats b
 3 where s.sid=r.sid and r.bid=b.bid and b.color='red'
 4 minus
 5 select s2.sid
 6 from sailors s2, reserves r2,boats b2
 7 where s2.sid=r2.sid and r2.bid=b2.bid and b2.color='green';

 SID

 64

12. Find all sid’s of sailors who have a rating of 10 or reserved boat 104

SQL> select s.sid
 2 from sailors s
 3 where s.rating=10
 4 union
 5 select r.sid
 6 from reserves r
 7 where r.bid=104;

 SID

 22
 31
 58
 71

DBMS LAB MANUAL KNREDDY

 50

NESTED QUERIES:

13. Find the names of sailors who have reserved boat 103

SQL> select s.sname
 2 from sailors s
 3 where s.sid in (select r.sid
 4 from reserves r
 5 where r.bid=103);

SNAME

dinesh
lokesh
hari

14. Find the names of sailors who have reserved a red boat

SQL> select s.sname
 2 from sailors s
 3 where s.sid in (select r.sid
 4 from reserves r
 5 where r.bid in (select b.bid
 6 from boats b
 7 where b.color='red'));

SNAME

dinesh
lokesh
hari

CORRELATED NESTED QUERIES:

15. Find the names of sailors who have reserved boat number 103

SQL> select s.sname
 2 from sailors s
 3 where exists (select *
 4 from reserves r
 5 where r.bid=103 and r.sid=s.sid);

SNAME

dinesh
lokesh
hari

DBMS LAB MANUAL KNREDDY

 51

SET COMPARISON OPERATORS:

16. Find sailors whose rating is better than some sailor called hari

SQL> select s.sid
 2 from sailors s
 3 where s.rating >any (select s2.rating
 4 from sailors s2
 5 where s2.sname='hari');

 SID

 58
 71
 74
 31
 32

17. Find the sailor with the highest rating

SQL> select s.sid
 2 from sailors s
 3 where s.rating>=all(select s2.rating
 4 from sailors s2)

 SID

 58
 71

18. Find the name of sailors who have reserved both a red and a green boat

SQL> select s.sname
 2 from sailors s, reserves r,boats b
 3 where s.sid=r.sid and r.bid=b.bid and b.color='red'
 4 and s.sid in(select s2.sid
 5 from sailors s2,boats b2,reserves r2
 6 where s2.sid=r2.sid and r2.bid=b2.bid and b2.color='green');

SNAME

dinesh
dinesh
lokesh
lokesh

DBMS LAB MANUAL KNREDDY

 52

19. Find the names of sailors who have reserved all boats

SQL> select s.sname
 2 from sailors s
 3 where not exists(select b.bid
 4 from boats b
 5 where not exists(select r.bid
 6 from reserves r
 7 where r.bid=b.bid and r.sid=s.sid));

SNAME

dinesh

AGGREGATE OPERATORS:

20. Find the average age of sailors with a rating of 10

SQL> select avg(s.age)
 2 from sailors s
 3 where s.rating=10;

AVG(S.AGE)

 25.5

21. Find the name and age of the oldest sailor
SQL> select s.sname,s.age
 2 from sailors s
 3 where s.age=(select max(s2.age)
 4 from sailors s2);

SNAME AGE
--------------- --------------
boby 63.5

22. Count the number of sailors
SQL> select count(*)
 2 from sailors s;

 COUNT(*)

 10

23. Count the number of different sailor names
SQL> select count(distinct s.sname)
 2 from sailors s;

COUNT(DISTINCTS.SNAME)

 9

DBMS LAB MANUAL KNREDDY

 53

24. Find the names of sailors who are older than the oldest sailor with a rating of 10

SQL> select s.sname
 2 from sailors s
 3 where s.age>(select max(s2.age)
 4 from sailors s2
 5 where s2.rating=10);

 (or)
SQL> select s.sname
 2 from sailors s
 3 where s.age> all (select s2.age
 4 from sailors s2
 5 where s2.rating=10);

SNAME

dinesh
lokesh
boby

GROUP BY CLAUSE:

25. Find the age of the youngest sailor for each rating level

SQL> select s.rating, min(s.age)
 2 from sailors s
 3 group by s.rating;

 RATING MIN(S.AGE)
---------- -----------------
 1 33
 8 25.5
 7 35
 3 25.5
 10 16
 9 35

6 rows selected.

26. Find the age of the youngest sailor who is eligible to vote(i.e., is at least 18 years old) for each
rating level with at least two such sailors

SQL>select s.rating,min(s.age) as minimumage
 2 from sailors s
 3 where s.age>=18
 4 group by s.rating
 5 having count(*)>1

DBMS LAB MANUAL KNREDDY

 54

 RATING MINIMUMAGE
------------- --------------------
 8 25.5
 7 35
 3 25.5

27. For each red boat find the number of reservations for this boat

SQL> select b.bid,count(*) as reservationcount
 2 from boats b,reserves r
 3 where r.bid=b.bid and b.color='red'
 4 group by b.bid;

 BID RESERVATIONCOUNT
---------- ----------------------------
 102 3
 104 2

28. Find the average age of sailors for each rating level that has at least two sailors

SQL> select s.rating, avg(s.age) as average
 2 from sailors s
 3 group by s.rating
 4 having count(*)>1;

 RATING AVERAGE
-------------- ---------------
 8 40.5
 7 40
 3 44.5
 10 25.5

DBMS LAB MANUAL KNREDDY

 55

SQL FUNCTIONS
 The data in database are the basis of critical business information. Generating information from
data often requires many data manipulations. Sometimes such data manipulation involves the
decomposition of data elements.
 SQL functions are very useful tools. There are many types of SQL functions, such as
arithmetic, trigonometric, string, date, and time functions.

NOTE: DUAL is oracles pseudo table used only for case where a table is not really needed

DATE FUNCTIONS
• SYSDATE: Returns today’s date.

 SQL> select sysdate
 2 from dual;

SYSDATE

04-MAR-12

• ADD_MONTHS: Returns date after adding the number of months specified in the function.

Syntax: ADD_MONTHS(DATE_VALUE,N)

SQL> select add_months(sysdate,4)
 2 from dual;

ADD_MONTH

04-JUL-12
SQL> select add_months(sysdate,4)"addmonths"
 2 from dual;

addmonths

04-JUL-12
SQL> select add_months(sysdate,4) as addmonths
 2 from dual;

ADDMONTHS

04-JUL-12

• LAST_DAY: Returns the date of the last day of the month given in a date.
Syntax: LAST_DAY(DATE_VALUE)
SQL> select sysdate,last_day(sysdate)"lastday"
 2 from dual;

SYSDATE lastday
-------------- ------------
04-MAR-12 31-MAR-12

DBMS LAB MANUAL KNREDDY

 56

NUMERIC FUNCTIONS:
 Numeric functions can be grouped in many different ways, such as algebraic, trigonometric
and logarithmic. The following are selected group of numeric functions.

• ABS: Returns the absolute value of a number
Syntax: ABS(NUMERIC_VALUE)

SQL> select 1.93,-1.93, abs (1.93), abs (-1.93)
 2 from dual;

 1.93 -1.93 ABS (1.93) ABS (-1.93)
 ----------- ----------- ------------- -------------
 1.93 -1.93 1.93 1.93

• POWER: Returns m raised to the nth power. n must be an integer, else an error is returned .
Syntax: POWER(m,n)
Eg. Find 52

 SQL> select power(5,2)
 2 from dual;

POWER(5,2)

 25

• ROUND: Returns n, rounded to m places to the right of a decimal point. If m is omitted , n is
rounded to zero places
Syntax: ROUND(n,m)

SQL> select round(15.193,1)
 2 from dual;
ROUND(15.193,1)

 15.2
SQL> select round(15.193)
 2 from dual;

ROUND(15.193)

 15

• SQRT: Returns square root of n.
Syntax: SQRT(n)
Eg. Find the square root of 625
SQL> select sqrt(625)
 2 from dual;

 SQRT(625)

 25

DBMS LAB MANUAL KNREDDY

 57

• MOD: Returns the remainder of a first number divided by second number passed a parameter. If
the second number is zero, the result is the same as the first number.

 Syntax: MOD(m,n)
Eg. Find 15 mod 4

 SQL> select mod(15,4)
 2 from dual;

 MOD(15,4)

 3
• FLOOR: Returns the largest integer value that is equal to or less than a number.

Syntax: FLOOR(n)
Eg. Find floor(24.8)

SQL> select floor(24.8)
 2 from dual;

FLOOR(24.8)

 24

• CEIL: Returns the smallest integer value that is greater than or equal to a number
Syntax: CEIL(n)
Eg. Find ceil(24.8)

SQL> select ceil(24.8)
 2 from dual;

CEIL(24.8)

 25

STRING FUNCTIONS:

• CONCATENATION: (||) Concatenates data from two different character columns and returns a
single column

• LOWER: Returns char , with all letters in lower case.
Syntax: LOWER(char)

SQL> select lower('KNREDDY') as lower
 2 from dual;

LOWER

knreddy

DBMS LAB MANUAL KNREDDY

 58

• INITCAP: returns a string with the first letter of each word in upper case
Syntax: INITCAP(char)

SQL> select initcap('nageswarareddy') as initcap
 2 from dual;

INITCAP

Nageswarareddy

• UPPER: Returns a string with all letters forced to upper
Syntax: UPPER(char)

SQL> select upper('knreddy') as upper
 2 from dual;

UPPER

KNREDDY

• SUBSTR: Returns a portion of characters, beginning at character m, and going upto characters n.
If n is omitted, the result returned is upto the last character in the string. The first position of
character is 1.

Syntax: SUBSTR(<string>,<startposition>,<length>)

Where string - source string
 Start position – position for extraction
 Length – number of characters to extract

SQL> select substr('databasemanagementsystems',5,4)
 2 from dual;

SUBS

base

SQL> select substr('databasemanagementsystems',5) as substr
 2 from dual;

SUBSTR

basemanagementsystems

• ASCII: Returns the number code that represents the specified character. If more than one character
is entered , the function will return the value for the first character and ignore all of the characters
after the first.
Syntax: ASCII(<single- character>)

DBMS LAB MANUAL KNREDDY

 59

SQL> select ascii('a')
 2 from dual;

ASCII('A')

 97

SQL> select ascii('A')
 2 from dual;

ASCII('A')

 65

SQL> select ascii('APPLE')
 2 from dual;

ASCII('APPLE')

 65

• LENGTH: Returns the length of a word
Syntax: LENGTH(word)

SQL> select length('database')
 2 from dual;

LENGTH('DATABASE')

 8

SQL> select length('data base')
 2 from dual;

LENGTH('DATABASE')

 9

• LTRIM: Removes characters from the left of character with initial characters removed upto the
first character not in set.
Syntax: LTRIM(char,set)

SQL> select ltrim('dbms','d')
 2 from dual;

LTR

bms

DBMS LAB MANUAL KNREDDY

 60

SQL> select ltrim('ddddbms','d')
 2 from dual;

LTR

bms

SQL> select ltrim('dbms','d''b')
 2 from dual;

LT

ms

• RTRIM: Returns char, eith final characters removed after the last character not in the set.
Syntax: RTRIM(char,set)

SQL> select rtrim('dbms','s')
 2 from dual;

RTR

dbm

SQL> select rtrim('dbms','s''m')
 2 from dual;

RT

Db

• TRIM: Removes all specified characters either from the beginning or the ending of a string
Syntax: TRIM([leading|trailing|both{<trim-characters> from]] <string>)
Where leading -remove trim string from the front of the string
 Trailing -remove trim string from end of string
 Both -remove trim string from the front and end of string
If none of the above option is chosen, the TRIM function will remove trim string from both the
front and end of string.
 Trim_character is the character that will be removed from string. If this parameter is omitted,
the trim function will remove all leading and trailing spaces from string
 String - string to trim

SQL> select trim(' dbms ')
 2 from dual;

TRIM

dbms

DBMS LAB MANUAL KNREDDY

 61

SQL> select trim(leading 'x' from 'xxxxxdbmsxxxxx') as leading
 2 from dual;

LEADING

dbmsxxxxx

SQL> select trim(trailing 'x' from 'xxxxxdbmsxxxxx') as trailing
 2 from dual;

TRAILING

xxxxxdbms

SQL> select trim(both 'x' from 'xxxxxdbmsxxxxx')
 2 from dual;

TRIM

dbms

SQL> select trim(both '1' from '1123dbms2311') as both
 2 from dual;

BOTH

23dbms23

• LPAD: Return char-1 left padded to length n with the sequence of characters specified in char-2. If
char-2 is not specified oracle uses blanks by default
Syntax: LPAD(char-1,n,char-2)

SQL> select lpad('dbms',15,'@') as lpad
 2 from dual;

LPAD

@@@@@@@@@@@dbms

• RPAD: Return char-1 right padded to length n with the sequence of characters specified in char-2.
If char-2 is not specified oracle uses blanks by default
Syntax: LPAD(char-1,n,char-2)

SQL> select rpad('dbms',15,'@') as rpad
 2 from dual;

RPAD

dbms@@@@@@@@@@@

DBMS LAB MANUAL KNREDDY

 62

PL/SQL
• ORACLE is a relational data base.
• The language used to access a relational data base is SQL.
• SQL is a flexible, efficient language, with features designed to manipulate and examine relational

data.
• SQL is a fourth generation language. SQL is a nonprocedural language.
• Nonprocedural means what rather than how.
While SQL is the natural language of the DBA, it does not have any procedural capabilities such as
looping & branching nor does it have any conditional checking capabilities vital for data testing
before storage.

FOR ALL THIS, ORACLE PROVIDES PL/SQL

INTRODUCTION:-

• PL/SQL (Procedural Language/SQL) is a procedural extension of oracle-SQL.
• PL/SQL is a sophisticated programming language used to access an ORACLE data base.
• PL/SQL is integrated with the database server so that the PL/SQL code can be processed quickly

and efficiently.
• The PL/SQL language includes object oriented programming techniques such as encapsulation,

function overloading, and information hiding (all but inheritance).
• PL/SQL is commonly used to write data-centric programs to manipulate data in an Oracle database.
• PL/SQL bridges the gap between database technology and procedural programming languages.

It can be thought of as a development tool that extends the facilities of Oracle’s SQL database language.
Via PL/SQL you can insert, delete, update and retrieve table data as well as use procedural techniques
 such as writing loops or branching to another block of code.

• PL/SQL is really an extension of SQL. It allows you to use all the SQL data manipulation statements
as well as the cursor control operations and transaction processing. PL/SQL blocks can contain any
 number of SQL statements. It allows you to logically group a number of SQL sentence and pass
 them to the DBA as a single block.

• The basic construct in PL/SQL is a block. Blocks allow designers to combine logically related
(SQL) statements into units.

• In a block, constants and variables can be declared and variables can be used to store query results.
• Statements in a PL/SQL block include SQL statements, control structures (loops), condition

statements (if-then-else), exception handling, and calls of other PL/SQL blocks.
• PL/SQL blocks that specify procedures and functions can be grouped into packages.
• Another important feature of PL/SQL is that it offers a mechanism to process query results in a

tuple-oriented way, that is, one tuple at a time. For this cursors are used. A cursor basically is a
pointer to a query result and is used to record attribute values of selected tuples into variables. A
cursor typically is used in combination with a loop construct such that each tuple read by the
cursor can be processed individually.

• In summary the major goals of PL/SQL are to:
 Increase the expressiveness of SQL
 Process query results in a tuple oriented way
 Optimize combined SQL statements
 Develop modular database application programs
 Reuse program code
 Reduce the cost for maintaining and changing application

DBMS LAB MANUAL KNREDDY

 63

PERFORMANCE:

Without PL/SQL, DBA has to process SQL statements one at a time. This results in calls being
made to the DBA each time an SQL statement is executed. It slows down table data processing
considerably, especially when several users are firing SQL statements at the same time, as done in a
multi – user environment. Each time an SQL statement is fired, it causes traffic to originate on the
network and places quite a bit of overhead on the hardware.

With PL/SQL, an entire block of statements can be sent to the RDBMS engine at any one time.
This dramatically reduces the communication between the developed software and the DBA
(i.e. it reduces the traffic on the network)

PERFORMANCE IMPROVEMENT:

It is obvious that when the DBA gets SQL code as a single block, it exercises this code faster than if it got
the code one sentence at a time. Hence, there is a definite improvement in the performance time of the DBA.

PL/SQL can also be used in SQL*FORMS. Its procedural capabilities can be used for writing complex
triggers that will validate data before it is placed in the table. Here, the trigger code will be treated by
the DBA as a block and processed in the same manner. Via PL/SQL you can do all sorts of calculations,
 quickly and efficiently without the use of the DBA. This considerably improves transaction performance.

PORTABILITY:

Applications written in PL/SQL are portable to any computer and operating system, where
ORCALE is operational. Hence, PL/SQL code blocks written for a DOS version of Oracle will run
 on its UNIX version, without any modifications made to it.

 Block
PL/SQL begin
SQL statement
SQL statement
PL/SQL end

SQL sentence
SQL sentence
SQL sentence

APPLICATION

APPLICATION

ORACLE DBA

DBA OF ANY
OTHER RDBMS

DBMS LAB MANUAL KNREDDY

 64

USING PL/SQL BLOCKS IN THE SQL*PLUS ENVIRONMENT

PL/SQL can also be run from within the SQL*plus environment. After invoking SQL*plus,
you can run a PL/SQL block in any one of the following ways:

1. Key it in directly using the SQL * PLUS editor, then run it.
2. Load it from a previously created ASCII file.

Either of the 2 methods require you to be within the SQL*PLUS environment first.
All PL/SQL blocks starts with the reserved word DECLARE or if the block has no declaration part,
it will start with the reserved word BEGIN.

Typing either of these words at the SQL * PLUS prompt (SQL>) informs the SQL * PLUS code
 (held in RAM) to do the following:

1. Clear the SQL buffer,
2. Enter into INPUT mode,
3. Ignore semicolons, i.e. the SQL statement terminator.

You can then key in your entire PL/SQL block and use the normal SQL * PLUS editing
features to edit the block. Terminating your PL/SQL block with a period (.) stores the block in the SQL
buffer. If you terminate the PL/SQL block with a slash (/), it causes the PL/SQL block to be stored in the
SQL buffer and then be executed.

If the SQL buffer contains an SQL statement or a PL/SQL block and you want to run it, simply
type run or / (slash) at the SQL*PLUS prompt. When the SQL statement or the PL/SQL block
has finished running, you are returned to the SQL*PLUS prompt i.e. SQL>

The PL/SQL SYNTAX:

The character set:

The basic character set includes the following:

 Uppercase alphabets { A – Z }
 Lowercase alphabets { a – z }
 Numerals { 0 – 9 }
 Symbols: () + - * / < > = ! ; : . ‘ @ % , “ # $ ^ & _ \ { } ? []

Words used in a PL/SQL block are called lexical units. You can freely insert blank spaces between
lexical units in a PL/SQL block. The spaces have no effect on the PL/SQL block.

The ordinary symbols used in PL/SQL blocks are: () + - * / < > = ; % ‘ “ [] :

Compound symbols used in PL/SQL blocks are: < > != ~= ^= <= >= := ** .. || <<>>

COMMENTS: The comment can have 2 forms:

The comment line begins with a double hyphen (--). The entire line will be treated as a comment.
The comment line begins with a slash followed by an asterisk (/*) till the occurrence of an asterisk

DBMS LAB MANUAL KNREDDY

 65

followed by a slash (*/). All lines within, are treated as comments.
This form of specifying comments can be used to span across multiple lines, which means that
you can use this to surround a section of a PL/SQL block that you temporarily do not want to execute.

NOTE: Comments cannot be nested.

PL/SQL DATA TYPES:

Both PL/SQL and Oracle have their foundations in SQL. Most PL/SQL data types are native to
Oracle’s data dictionary. Hence, there is a very easy integration of PL/SQL code with the Oracle RDBMS.

NUMBER for storing numeric data
CHAR for storing character data
DATE for storing date and time data
BOOLEAN for storing TRUE, FALSE or NULL
%TYPE declares a variable or constant to have the same data type as that of a previously
defined variable or of a column in a table or in a view. When referencing a table, you may name the
table and column, or the owner of the table and column.

The %TYPE attribute provides for further integration. PL/SQL can use the %TYPE attribute to declare
variables based on definitions of columns in a table. Hence, if a column’s attributes change, the
variable’s attributes will change as well. This provides for data independence, reduces maintenance
costs and allows programs to adapt to changes made to the table.

WHAT IS THE DIFFERENCE BETWEEN %TYPE AND %ROWTYPE?

The %TYPE and %ROWTYPE constructs provide data independence, reduces maintenance costs, and
allows programs to adapt as the database changes to meet new business needs.

%ROWTYPE is used to declare a record with the same types as found in the specified database table,
view or cursor.

Example; DECLARE
 v_EmpRecord emp%ROWTYPE;

%TYPE is used to declare a field with the same type as that of a specified table's column.

Example: DECLARE
 v_EmpNo emp.empno%TYPE;

VARIABLES:

A variable name must begin with a character and can be followed by a maximum of 29 other
characters. Reserved words cannot be used as variable names unless enclosed with in double quotes.
Variables must be separated from each other by at least one space or by a punctuation mark. The case
is insignificant when declaring variable names. A space cannot be used in variable name.

DBMS LAB MANUAL KNREDDY

 66

UNDERSTANDING THE PL/SQL BLOCK STRUCTURE

AN IDENTIFIER IN THE PL/SQL BLOCK:

The name of any Oracle object (variable, constant, record, cursor etc.) is known as an identifier. The
following laws have to be followed while working with identifiers:

1. An identifier cannot be declared twice in the same block.
2. The same identifier can be declared in two different blocks.
3. If you follow the second law, the two identifiers are unique and any change in one does not affect

the other. An identifier can be declared in a sub-block of another sub-block in which case it is local
that sub-block alone.

Example:

DECLARE
 account number(5);
 credit_limit number(9,2);

BEGIN
 DECLARE
 account char(20);
 new_balance number(9,2);
 BEGIN
 The identifiers available to this block are

THE PL/SQL BLOCK:

 DECLARE

Declarations of memory variables used later.

BEGIN

SQL executable statements for manipulating table data.

SQL and/ or PL/SQL code to handle errors that may crop up during the
execution of the above code block

EXCEPTION

END;

DBMS LAB MANUAL KNREDDY

 67

 account char(20), credit_limit, new_balance
 END;
 DECLARE
 old_balance number(9,2);
 BEGIN
 /* The identifiers available to this block are
 account number(5), credit_limit, old_balance */
 END;
 /* The identifiers available here are account number(5),
 Credit_limit */
END;

DISPLAYING USER MESSAGES ON THE SCREEN:

Any programming tool requires a method through which messages can be displayed to the user.

dbms_output is a package that includes a number of procedure & functions that accumulate
information in a buffer so that it can be retrieved later. These functions can also be used to display
messages to the user.

put_line Put a piece of information in the buffer followed by an end-of-line marker. It can also be
used to display message to the user. put_line expects only one parameter of character data type. If used
to display message, it will be the message string.

To display messages to the user the SERVEROUTPUT should be set to ON. SERVEROUTPUT is a
SQL*PLUS environment parameter that displays the information passed as a parameter to the put_line
function.

Example: Setting the server output on: SET SERVEROUTPUT ON;

Example:

SQL> BEGIN
 2 EXECUTE IMMEDIATE 'CREATE TABLE X(A DATE)';
 3 END;
 4 /

PL/SQL procedure successfully completed.

SQL> DESC X;
 Name Null? Type
 --- -------- -------------------
 A DATE

NOTE: The DDL statement in quotes should not be terminated with a semicolon.

DBMS LAB MANUAL KNREDDY

 68

CONDITIONAL CONTROL IN PL/SQL:

In PL/SQL, the if statement allows you to control the execution of a block of code. In PL/SQL you can
use the IF – THEN – ELSIF – ELSE – END IF statements in code blocks that will allow you to write
specific conditions under which a specific block of code will be executed.

Syntax: IF < condition> THEN
 <action>
 ELSIF <condition>
 <action>
 ELSE <action>
 END IF;

Iterative Control:

This is the ability to repeat or skip sections of a code block.

A loop repeats a sequence of statements. You have to place the keyword loop before the first statement
in the sequence of statements that you want repeated and the keywords end loop immediately after the
last statement in the sequence. Once a loop begins to run, it will go on forever. Hence loops are always
accompanied by a conditional statement that keeps control on the number of times the loop is
executed.

You can build user defined exits from a loop, where required.

THE WHILE LOOP:

Syntax: WHILE <condition>
 LOOP <action>
 END LOOP;

THE FOR LOOP:

Syntax: FOR variable IN [REVERSE] start..end
 LOOP
 <action>
 END LOOP;

THE GOTO STATEMENT:

The go to statement allows you to change the flow control within a PL/SQL block.

The entry point of the block is defined with in <<>> as shown in the above example.

Syntax: GOTO <action>

 <<action>>
 SQL statement;
 SQL statement;

DBMS LAB MANUAL KNREDDY

 69

• THE PL/SQL BLOCK STURCTURE:
[DECLARE
 <constants>
 <variables>
 <cursors>]
BEGIN
 <SQL statements>
 <PL/SQL statements>
[EXCEPTION
 <exception handling]
END;
/

Writing and executing a PL/SQL program:

SQL> ed <filename>
 Note pad will open with the above command. Type program in the note pad and save
SQL>set serveroutput on
SQL>@<filename>

DBMS LAB MANUAL KNREDDY

 70

 WRITE A PL/SQL PROGRAM TO ADD TWO NUMBERS

//File name: add

DECLARE

 a number(5);

 b number(5);

 c number(5);

BEGIN

 a:=&a;

 b:=&b;

 c:=a+b;

dbms_output.put_line('the sum of two numbers(a+b)='||c);

END;

/

OUTPUT:

SQL> @add

Enter value for a: 40

old 6: a:=&a;

new 6: a:=40;

Enter value for b: 80

old 7: b:=&b;

new 7: b:=80;

the sum of two numbers(a+b)=120

PL/SQL procedure successfully completed.

DBMS LAB MANUAL KNREDDY

 71

 WRITE A PL/SQL PROGRAM TO FIND LARGEST NUMBER FROM THE GIVEN

THREE NUMBERS

//file name:largestnum

DECLARE

 a number(5);

 b number(5);

 c number(5);

BEGIN

 a:=&a;

 b:=&b;

 c:=&c;

 if a>b and a>c then

 dbms_output.put_line('the largest number is'||a);

 else if b>c and b>a then

 dbms_output.put_line('the largest number is'||b);

 else

 dbms_output.put_line('the largest number is'||c);

 end if;

end if;

END;

/

OUTPUT:

SQL> @largestnum
Enter value for a: 8
old 6: a:=&a;
new 6: a:=8;
Enter value for b: 4
old 7: b:=&b;
new 7: b:=4;
Enter value for c: 6
old 8: c:=&c;
new 8: c:=6;
the largest number is8

PL/SQL procedure successfully completed.

DBMS LAB MANUAL KNREDDY

 72

 WRITE A PL/SQL PROGRAM FOR CHECKING A NUMBER IS EVEN OR ODD
//file name: evenodd
DECLARE

 num number(5);

 rem number(5);

BEGIN

 num:=#

 rem:=mod(num,2);

 if rem=0 then

 dbms_output.put_line('Number'|| num||'is EVEN');

 else

 dbms_output.put_line('Number'|| num||'is ODD');

end if;

END;

/
OUTPUT:

SQL> ed evenodd

SQL> @evenodd
Enter value for num: 123
old 5: num:=#
new 5: num:=123;
Number123is ODD

PL/SQL procedure successfully completed.

SQL> /
Enter value for num: 120
old 5: num:=#
new 5: num:=120;
Number120is EVEN

PL/SQL procedure successfully completed.

DBMS LAB MANUAL KNREDDY

 73

 WRITE A PL/SQL PROGRAM TO FINS SUM OF DIGITS OF A GIVEN NUMBER.
//file name:digitssum
DECLARE

 num number(5);

 rem number(5);

 s number(5):=0;

 num1 number(5);

BEGIN

 num:=#

 num1:=num;

 while(num>0)

 loop

 rem:=mod(num,10);

 s:=s+rem;

 num:=trunc(num/10);

 end loop;

 dbms_output.put_line(‘Sum of digits of '||num1||' is: '||s);

END;

/

OUTPUT:

SQL> @digitssum

Enter value for num: 2315

old 7: num:=#

new 7: num:=2315;

Sum of digits of 2315 is: 11

PL/SQL procedure successfully completed.

DBMS LAB MANUAL KNREDDY

 74

 WRITE A PL/SQL PROGRAM TO DISPLAY EVEN NUMBERS UPTO CERTAIN

NUMBER.

//file name: evennumbers

DECLARE

 num number(5);

 i number(5);

BEGIN

 num:=#

 i:=1;

 while(i<=num)

 loop

 if(mod(i,2)=0) then

 dbms_output.put_line(i);

 i:=i+1;

 else

 i:=i+1;

 end if;

 end loop;

END;

/

OUTPUT:

SQL> @evennumbers

Enter value for num: 20

old 5: num:=#

new 5: num:=20;

2
4
6
8
10
12
14
16
18
20

PL/SQL procedure successfully completed.

DBMS LAB MANUAL KNREDDY

 75

 WRITE A PL/SQL PROGRAM TO CHECK THE GIVEN STRING IS PALINDROME OR

NOT.

//file name: palindrome

DECLARE
 name varchar2(20);
 temp varchar2(20);
 len number(5);
BEGIN
 name:='&name';
 len:=length(name);
 while len>0
 loop
 temp:=temp||substr(name,len,1);
 len:=len-1;
 end loop;
dbms_output.put_line('reverse of string is: '||temp);
 if(name=temp) then
 dbms_output.put_line(name||' is palindrome');
 else
 dbms_output.put_line(name||' is not palindrome');
 end if;
END;
/
OUTUT:
SQL> @palindrome
Enter value for name: madam
old 6: name:='&name';
new 6: name:='madam';
reverse of string is: madam
madam is palindrome

PL/SQL procedure successfully completed.

SQL> /
Enter value for name: abcd
old 6: name:='&name';
new 6: name:='abcd';
reverse of string is: dcba
abcd is not palindrome

PL/SQL procedure successfully completed.

DBMS LAB MANUAL KNREDDY

 76

 WRITE A PL/SQL PROGRAM TO CHECK THE GIVEN NUMBER IS ARMSTRONG

OR NOT.

//file name: armstrong
DECLARE
 num number(5);
 rem number(5);
 s number(5):=0;
 num1 number(5);
BEGIN
 num:=#
 num1:=num;
 while(num>0)
 loop
 rem:=mod(num,10);
 s:=s+power(rem,3);
 num:=trunc(num/10);
 end loop;
 if(s=num1) then
 dbms_output.put_line(num1||' is armstrong number');
 else
 dbms_output.put_line(num1||' is not armstrong number');
 end if;
END;
/
OUTPUT:
SQL> @armstrong
Enter value for num: 153
old 7: num:=#
new 7: num:=153;
153 is armstrong number

PL/SQL procedure successfully completed.

SQL> /
Enter value for num: 125
old 7: num:=#
new 7: num:=125;
125 is not armstrong number

PL/SQL procedure successfully completed.

DBMS LAB MANUAL KNREDDY

 77

 WRITE A PL/SQL PROGRAM TO GENERATE FIBONACCI SERIES
//file name: Fibonacci
DECLARE
 num number(5);
 f1 number(5);
 f2 number(5);
 f3 number(5);
 i number(5);
BEGIN
 f1:=0;
 f2:=1;
 i:=3;
 num:=#
 dbms_output.put_line('the fibonacci series is: ');
 dbms_output.put_line(f1);
 dbms_output.put_line(f2);
 for i in 3..num
 loop
 f3:=f1+f2;
 dbms_output.put_line(f3);
 f1:=f2;
 f2:=f3;
 end loop;
END;
/
OUTPUT:
SQL> @Fibonacci
Enter value for num: 10
old 11: num:=#
new 11: num:=10;
the fibonacci series is:
0
1
1
2
3
5
8
13
21
34

PL/SQL procedure successfully completed.

DBMS LAB MANUAL KNREDDY

 78

 WRITE A PL/SQL PROGRAM TO PRINT THE MULTIPLICATION TABLE.
//file name: multiplication
DECLARE

 i number(5);

 n number(5);

BEGIN

 n:=&n;

 for i in 1..10 loop

 dbms_output.put_line(n || ' * ' || i || ' = ' || n*i);

 end loop;

END;

/

OUTPUT:
SQL> @multiplication
Enter value for n: 25
old 5: n:=&n;
new 5: n:=25;
25 * 1 = 25
25 * 2 = 50
25 * 3 = 75
25 * 4 = 100
25 * 5 = 125
25 * 6 = 150
25 * 7 = 175
25 * 8 = 200
25 * 9 = 225
25 * 10 = 250

PL/SQL procedure successfully completed.

DBMS LAB MANUAL KNREDDY

 79

 WRITE A PL/SQL PROGRAM TO CONVERT FARENHEIT TO CELSIUS
//file name:Celsius
DECLARE
 fah number(6,2);
 cels number(6,2);
 zero_error exception;
BEGIN
 fah:=&fah;
 if fah<=0 then
 raise zero_error;
 end if;
 cels:=fah-32*(9/5);
 dbms_output.put_line('celsius='||cels);
EXCEPTION
when zero_error then
dbms_output.put_line('invalid number');
END;
/

OUTPUT:

SQL> @celsius
Enter value for fah: 90
old 6: fah:=&fah;
new 6: fah:=90;
celsius=32.4

PL/SQL procedure successfully completed.

DBMS LAB MANUAL KNREDDY

 80

 WRITE A PL/SQL PROGRAM TO FIND OUT THE REVERSE OF A NUMBER
//file name:reverse
DECLARE

 num number(10);

 num1 number(10);

 rem number(10);

 s number(10);

BEGIN

 num:=#

 num1:=num;

 s:=0;

 while num>0 loop

 rem:=mod(num,10);

 s:=s*10+rem;

 num:=trunc(num/10);

 end loop;

dbms_output.put_line('The reverse of the number'||num1||' is '||s);

END;

/

OUTPUT:

SQL> @reverse
Enter value for num: 12345
old 7: num:=#
new 7: num:=12345;
The reverse of the number12345 is 54321

PL/SQL procedure successfully completed.

SQL> /
Enter value for num: 123456789
old 7: num:=#
new 7: num:=123456789;
The reverse of the number123456789 is 987654321

PL/SQL procedure successfully completed.

DBMS LAB MANUAL KNREDDY

 81

 WRITE A PL/SQL PROGRAM TO CALCULATE SIMPLE INTEREST
// file name: interest
DECLARE
 p number(10);
 t number(10);
 r number(10);
 si number(10);
BEGIN
 p:=&p;
 t:=&t;
 r:=&r;
 si:=(p*t*r)/100;
 dbms_output.put_line('simple interest is '|| si);
END;
/
OUTPUT:
SQL> @interest
Enter value for p: 5000
old 7: p:=&p;
new 7: p:=5000;
Enter value for t: 12
old 8: t:=&t;
new 8: t:=12;
Enter value for r: 2
old 9: r:=&r;
new 9: r:=2;
simple interest is 1200

PL/SQL procedure successfully completed.

SQL> /
Enter value for p: 100000
old 7: p:=&p;
new 7: p:=100000;
Enter value for t: 24
old 8: t:=&t;
new 8: t:=24;
Enter value for r: 2
old 9: r:=&r;
new 9: r:=2;
simple interest is 48000

PL/SQL procedure successfully completed.

DBMS LAB MANUAL KNREDDY

 82

 WRITE A PL/SQL PROGRAM TO CHECK WHETHER THE GIVEN NUMBER IS
PRIME OR NOT

//file name: prime
DECLARE
 a number;
 c number:=0;
 i number;
BEGIN
 a:=&a;
 for i in 1..a
 loop
 if mod(a,i)=0 then
 c:=c+1;
 end if;
 end loop;
 if c=2 then
 dbms_output.put_line(a ||'is a prime number');
 else
 dbms_output.put_line(a ||'is not a prime number');
 end if;
END;
/
OUTPUT:
SQL> @prime
Enter value for a: 11
old 6: a:=&a;
new 6: a:=11;
11is a prime number

PL/SQL procedure successfully completed.

SQL> /
Enter value for a: 25
old 6: a:=&a;
new 6: a:=25;
25is not a prime number

PL/SQL procedure successfully completed.

DBMS LAB MANUAL KNREDDY

 83

 WRITE A PL/SQL PROGRAM WHICH ACCEPTS THE STUDENTS NAME,

NUMBER AND HIS MARKS AND DISPLAY TOTAL MARKS & GRADE.

//file name : student
DECLARE
 sno number(10);
 name varchar2(30);
 sub1 number(10);
 sub2 number(10);
 sub3 number(10);
 tot number(10);
 aveg number(10);
BEGIN
 sno:=&Student_Number;
 name := '&Student_Name';
 sub1 := &subject1;
 sub2 := &subject2;
 sub3 := &subject3;
 tot:=sub1+sub2+sub3;
 aveg:=tot/3;
dbms_output.put_line('_________________________');
dbms_output.put_line('Student Number :'||sno);
dbms_output.put_line('Student Name :'||name);
dbms_output.put_line('Student Sub1 Marks :'||sub1);
dbms_output.put_line('Student Sub2 Marks :'||sub2);
dbms_output.put_line('Student Sub3 Marks :'||sub3);
 if sub1>=40 and sub2>=40 and sub3>=40 then
 if aveg>=70 then
 dbms_output.put_line('Student got Distinction');
 elsif aveg>=60 then
 dbms_output.put_line('Student got First Class');
 elsif aveg>=50 then
 dbms_output.put_line('Student got Second Class');
 elsif aveg>=40 then
 dbms_output.put_line('Student got Third Class');
 end if;
 else
 dbms_output.put_line('Student is Failed');
 end if;
dbms_output.put_line('__________________________');
END;
/

DBMS LAB MANUAL KNREDDY

 84

OUTPUT:
SQL> @student
Enter value for student_number: 2315
old 10: sno:=&Student_Number;
new 10: sno:=2315;
Enter value for student_name: knreddy
old 11: name := '&Student_Name';
new 11: name := 'knreddy';
Enter value for subject1: 86
old 12: sub1 := &subject1;
new 12: sub1 := 86;
Enter value for subject2: 89
old 13: sub2 := &subject2;
new 13: sub2 := 89;
Enter value for subject3: 90
old 14: sub3 := &subject3;
new 14: sub3 := 90;

Student Number :2315
Student Name :knreddy
Student Sub1 Marks :86
Student Sub2 Marks :89
Student Sub3 Marks :90
Student got Distinction

PL/SQL procedure successfully completed.

DBMS LAB MANUAL KNREDDY

 85

 WRITE A PL/SQL PROGRAM FOR INSERTING ROWS INTO EMPDET
TABLEWITH THE FOLLOWING CALCULATION

HRA=50% OF BASIC
DA=20% OF BASIC
PF=7% OF BASIC
NETPAY=BASIC+DA+HRA-PF

SQL> create table empdet(
 2 empno number(3),
 3 empname varchar2(12),
 4 deptno number(3),
 5 basic number(6),
 6 hra number(5),
 7 da number(5),
 8 pf number(5),
 9 netpay number(10));

Table created.

// file name: employee
DECLARE
 empno1 empdet.empno%type;
 empname1 empdet.empname%type;
 deptno1 empdet.deptno%type;
 basic1 empdet.basic%type;
 hra1 empdet.hra%type;
 da1 empdet.da%type;
 pf1 empdet.pf%type;
 netpay1 empdet.netpay%type;
BEGIN
 empno1:=&empno1;
 empname1:='&empname1';
 deptno1:=&deptno1;
 basic1:=&basic1;
 hra1:=(basic1*50)/100;
 da1:=(basic1*20)/100;
 pf1:=(basic1*7)/100;
 netpay1:=basic1+hra1+da1-pf1;
insert into empdet values(empno1,'empname1',deptno1,basic1,hra1,da1,pf1,netpay1);
END;
/

DBMS LAB MANUAL KNREDDY

 86

OUTPUT:
SQL> @employee;
Enter value for empno1: 101
old 11: empno1:=&empno1;
new 11: empno1:=101;
Enter value for empname1: knreddy
old 12: empname1:='&empname1';
new 12: empname1:='knreddy';
Enter value for deptno1: 5
old 13: deptno1:=&deptno1;
new 13: deptno1:=5;
Enter value for basic1: 12000
old 14: basic1:=&basic1;
new 14: basic1:=12000;

PL/SQL procedure successfully completed.

SQL> select * from empdet;

 EMPNO EMPNAME DEPTNO BASIC HRA DA PF NETPAY
------------- ------------------ --------------- ---------- ------------ ------- ------ ----------
 101 empname1 5 2000 6000 2400 840 19560

DBMS LAB MANUAL KNREDDY

 87

 WRITE A PL/SQL PROGRAM TO CALCULATE ELECTRICITY BILLS BY THE
FOLLOWING DETAILS

CATEGORY UNIT RATE/UNIT
DOMESTIC <=100 2.20

>100 3.00
INDUSTRIAL <=100 3.20

>100 3.60
COMMERCIAL <=100 2.50

>100 3.40

// file name: elecbill
DECLARE
 catg varchar2(15);
 units number(4);
 bill number(6,2);
 invalid_input exception;
BEGIN
 catg:='&catg';
 units:=&units;
 if(catg!='domestic' AND catg!='industrial' AND catg!='commercial')
 OR(units<=0) then
 raise invalid_input;
 end if;
 if catg='domestic' then
 if units<=100 then
 bill:=units*2.20;
 else
 bill:=units*3.00;
 end if;
 else if catg='industrial' then
 if units<=100 then
 bill:=units*3.20;
 else
 bill:=units*3.60;
 end if;
 else if catg='commercial' then
 if units<=100 then
 bill:=units*2.50;
 else
 bill:=units*3.40;
 end if;
 end if;
 end if;

DBMS LAB MANUAL KNREDDY

 88

 end if;
dbms_output.put_line('The bill amount is: '|| bill);
EXCEPTION
 when invalid_input then
dbms_output.put_line('INVALID CATEGORY OR UNITS');
END;
/

OUTPUT:
SQL> @elecbill
Enter value for catg: domestic
old 7: catg:='&catg';
new 7: catg:='domestic';
Enter value for units: 95
old 8: units:=&units;
new 8: units:=95;
The bill amount is: 209

PL/SQL procedure successfully completed.

SQL> /
Enter value for catg: college
old 7: catg:='&catg';
new 7: catg:='college';
Enter value for units: 102
old 8: units:=&units;
new 8: units:=102;
INVALID CATEGORY OR UNITS

PL/SQL procedure successfully completed.

SQL> /
Enter value for catg: industrial
old 7: catg:='&catg';
new 7: catg:='industrial';
Enter value for units: 250
old 8: units:=&units;
new 8: units:=250;
The bill amount is: 900

PL/SQL procedure successfully completed.

DBMS LAB MANUAL KNREDDY

 89

PROCEDURES
• A stored procedure is a named collection of procedural and SQL statements

• Advantages of procedures:

 Stored procedures substantially reduce network traffic and increase performance

 Stored procedures help reduce code duplication by means of code isolation and code

sharing, thereby minimizing the chance of errors and the cost of application development

and maintenance

• To create a stored procedure, the following syntax is used:

CREATE OR REPLACE PROCEDURE <procedure name>

[(argument [IN/OUT] data type, --- ---)]

[IS/AS]

BEGIN

 PL/SQL or SQL statements;

 _ _ _ _ _ _ _

END;

To execute the stored procedure you must use the following syntax;

 EXEC procedure_name[(parameter list)];

DBMS LAB MANUAL KNREDDY

 90

 WRITE A PROCEDURE TO INSERT NEW RECORD INTO THE TABLE

SQL> create table cricket(
 2 cno number(4),
 3 cname varchar(10),
 4 country varchar(10));

Table created.

Procedure name: cricket
CREATE or REPLACE procedure crickinfo(cno IN number,cname IN varchar2,country IN
varchar2) AS
BEGIN
insert into cricket values(cno,cname,country);
dbms_output.put_line('one row inserted');
END;
/
OUTPUT:
SQL> @cricket
Procedure created.

SQL> exec crickinfo(1,'sachin','india')
one row inserted
PL/SQL procedure successfully completed.

SQL> /
Procedure created.

SQL> exec crickinfo(2,'gilcrist','australia')
one row inserted
PL/SQL procedure successfully completed.

SQL> exec crickinfo(3,'lara','westindies')
one row inserted
PL/SQL procedure successfully completed.

SQL> select * from cricket;

 CNO CNAME COUNTRY
---------- -------------- ----------------
 1 sachin india
 2 gilcrist australia
 3 lara westindies

DBMS LAB MANUAL KNREDDY

 91

FUNCTIONS
• A stored function is basically a named group of procedural and SQL statements that returns

a value (indicated by a RETURN statement in its program code).

• To create a function, you use the following syntax:

CREATE FUNCTION <function name>(arguments IN datatype, _ _ _ _ _ _ _)

RETURN datatype

[IS]

BEGIN

 PL/SQL statements;

 _ _ _ _ _

 RETURN (value or expression);

END;

/

 WRITE A FUNCTION TO ADD TWO NUMBERS

CREATE OR REPLACE FUNCTION sumtwonum(a number, b number)

return number

is

BEGIN

return a+b;

end;

/

OUTPUT:
SQL> @sumtwonum
Function created.

SQL> select sumtwonum(10,20)
 2 from dual;

SUMTWONUM(10,20)

 30

