
UNIT I

Introduction to Java: The key attributes of object oriented programming,

Simple program, The Java keywords, Identifiers, Data types and operators,

Program control statements, Arrays, Strings, String Handling

Introduction:

 JAVA is a programming language.

 Computer language innovation and development occurs for two fundamental reasons:

• To adapt to changing environments and uses

• To implement refinements and improvements in the art of programming

 Java is related to C++, which is a direct descendant of C. Much of the character of Java is

inherited from these two languages. From C, Java derives its syntax. Many of Java’s object-

oriented features were influenced by C++.

 Definition: Object-oriented programming (OOP) is a programming methodology that helps

organize complex programs through the use of inheritance, encapsulation, and polymorphism.

 Java was developed by James Gosling, Patrick Naughton, Chris Warth, Ed Frank, and

Mike Sheridan at Sun Microsystems, Inc. in 1991. This language was initially called “Oak,” but

was renamed “Java” in 1995.

 Java was not designed to replace C++. Java was designed to solve a certain set of problems.

C++ was designed to solve a different set of problems.

 Java contribution to internet:

Java programming had a profound effect on internet.

 Java Applets

An applet is a special kind of Java program that is designed to be transmitted over the Internet

and automatically executed by a Java-compatible web browser.

 Security

Every time you download a “normal” program, you are taking a risk, because the code you are

downloading might contain a virus, Trojan horse, or other harmful code.

In order for Java to enable applets to be downloaded and executed on the client computer

safely, it was necessary to prevent an applet from launching such an attack.

Java achieved this protection by confining an applet to the Java execution environment and not

allowing it access to other parts of the computer.

UNIT-I 1 KNREDDY

JAVA PROGRAMMING

 Portability

Portability is a major aspect of the Internet because there are many different types of computers

and operating systems connected to it. Java programming provide portability

Byte code:

The output of a Java compiler is not executable code. Rather, it is bytecode. Bytecode is a

highly optimized set of instructions designed to be executed by the Java run-time system, which

is called the Java Virtual Machine (JVM). In essence, the original JVM was designed as an

interpreter for bytecode.

 Servlets: Java on the Server Side

A servlet is a small program that executes on the server. Just as applets dynamically extend the

functionality of a web browser, servlets dynamically extend the functionality of a web server.
 The Java Buzzwords

o Simple
o Secure
o Portable
o Object-oriented
o Robust
o Multithreaded
o Architecture-neutral
o Interpreted
o High performance
o Distributed
o Dynamic

 Object-Oriented Programming

Object-oriented programming (OOP) is at the core of Java. In fact, all Java programs are to at

least some extent object-oriented.

Two Paradigms

All computer programs consist of two elements: code and data. Furthermore, a program can be

conceptually organized around its code or around its data.

Some programs are written around “what is happening” and others are written around “who is

being affected.” These are the two paradigms that govern how a program is constructed.

The first way is called the process-oriented model. The process-oriented model can be thought

of as code acting on data. Procedural languages such as C employ this model to considerable

success.

Object-oriented programming organizes a program around its data (that is, objects) and a set of

well-defined interfaces to that data. An object oriented program can be characterized as data

controlling access to code.

UNIT-I 2 KNREDDY

JAVA PROGRAMMING

The key Attributes of OOP:
All object-oriented programming languages provide mechanisms that help you implement the

object-oriented model. They are encapsulation, inheritance, and polymorphism.

Encapsulation

 Encapsulation is the mechanism that binds together code and the data it manipulates, and keeps

both safe from outside interference and misuse.

 In Java, the basis of encapsulation is the class.

 A class defines the structure and behavior (data and code) that will be shared by a set of

objects. Each object of a given class contains the structure and behavior defined by the class.

Objects are sometimes referred to as instances of a class.

 Thus, a class is a logical construct; an object has physical reality.

 The code and data that constitute a class are called members of the class. Specifically, the data

defined by the class are referred to as member variables or instance variables. The code that

operates on that data is referred to as member methods or just methods

 Each method or variable in a class may be marked private or public. The public interface of a

class represents everything that external users of the class need to know, or may know. The

private methods and data can only be accessed by code that is a member of the class

Inheritance

 Inheritance is the process by which one object acquires the properties of another object. This is

important because it supports the concept of hierarchical classification.

 Inheritance interacts with encapsulation as well. If a given class encapsulates some attributes,

then any subclass will have the same attributes plus any that it adds as part of its specialization

 A new subclass inherits all of the attributes of all of its ancestors.

Polymorphism

 Polymorphism (from Greek, meaning “many forms”) is a feature that allows one interface to be

used for a general class of actions.

 More generally, the concept of polymorphism is often expressed by the phrase “one interface,

multiple methods.” This means that it is possible to design a generic interface to a group of

related activities. This helps reduce complexity by allowing the same interface to be used to

specify a general class of action.

UNIT-I 3 KNREDDY

JAVA PROGRAMMING

A First Simple Program

/*

 This is a simple Java program.

 Call this file Example.java.

*/

class Example {

 // A Java program begins with a call to main().

 public static void main(String[] args) {

 System.out.println("Java drives the Web.");

 }

}

Entering the program:

The first step in creating a program is to enter its source code into the computer.

The name you give to a source file is very important. In Java, a source file is officially called a
compilation unit. It is a text file that contains (among other things) one or more class definitions.
The Java compiler requires that a source file use the .java filename extension

The name of the main class should match the name of the file that holds the program.

Compiling the Program

To compile the Example program, execute the compiler, javac, specifying the name of the source
file on the command line, as shown here:

| javac Example.java

The javac compiler creates a file called Example.class that contains the bytecode version of the
program. The output of javac is not code that can be directly executed.

Running the program

To actually run the program, you must use the Java application launcher called java.

To do so, pass the class name Example as a command-line argument, as shown here:

| java Example

When the program is run, the following output is displayed:

| Java drives the Web.

UNIT-I 4 KNREDDY

JAVA PROGRAMMING

First simple program line by line

The program begins with the following lines:

/*

This is a simple Java program.

Call this file ″Example.java″.

*/

This is a comment. The contents of a comment are ignored by the compiler. This is multiline
comment

class Example {

This line uses the keyword class to declare that a new class is being defined. Example is an
identifier that is the name of the class. The entire class definition, including all of its members, will
be between the opening curly brace ({) and the closing curly brace (}).

The next line in the program is the single-line comment, shown here:

// Your program begins with a call to main().

public static void main(String args[]) {

This line begins the main() method. All Java applications begin execution by calling main().

The public keyword is an access modifier, which allows the programmer to control the visibility of
class members. When a class member is preceded by public, then that member may be accessed by
code outside the class in which it is declared. main() must be declared as public, since it must be
called by code outside of its class when the program is started. The keyword static allows main()
to be called without having to instantiate a particular instance of the class. This is necessary since
main() is called by the Java Virtual Machine before any objects are made. The keyword void
simply tells the compiler that main() does not return a value.

In main(), there is only one parameter, String args[] declares a parameter named args, which is
an array of instances of the class String. Objects of type String store character strings. In this case,
args receives any command-line arguments present when the program is executed.

System.out.println(″Java drives the Web.″);

This line outputs the string “Java drives the Web.” followed by a new line on the screen. Output is
actually accomplished by the built-in println() method. In this case, println() displays the string
which is passed to it. The line begins with System.out. System is a predefined class that provides
access to the system, and out is the output stream that is connected to the console.

UNIT-I 5 KNREDDY

JAVA PROGRAMMING

Example2:
/*
 This demonstrates a variable.
 Call this file Example2.java.
*/
class Example2 {
 public static void main(String[] args) {
 int var1; // this declares a variable
 int var2; // this declares another variable
 var1 = 1024; // this assigns 1024 to var1
 System.out.println("var1 contains " + var1);
 var2 = var1 / 2;
 System.out.print("var2 contains var1 / 2: ");
 System.out.println(var2);
 }
}
O/P:
var1 contains 1024
var2 contains var1 / 2: 512

Example3:
/*
 This program illustrates the differences between int and double.
 Call this file Example3.java.
*/
class Example3 {
 public static void main(String[] args) {
 int w; // this declares an int variable
 double x; // this declares a floating-point variable
 w = 10; // assign w the value 10

 x = 10.0; // assign x the value 10.0
 System.out.println("Original value of w: " + w);
 System.out.println("Original value of x: " + x);
 System.out.println(); // print a blank line
 // now, divide both by 4
 w = w / 4;
 x = x / 4;
 System.out.println("w after division: " + w);
 System.out.println("x after division: " + x);
 }
}

O/P
Original value of w: 10
Original value of x: 10.0

w after division: 2
x after division: 2.5

UNIT-I 6 KNREDDY

JAVA PROGRAMMING

Example:
/*
 Try This 1-1
 This program converts gallons to liters.
 Call this program GalToLit.java.
*/
class GalToLit {
 public static void main(String[] args) {
 double gallons; // holds the number of gallons
 double liters; // holds conversion to liters

 gallons = 10; // start with 10 gallons
 liters = gallons * 3.7854; // convert to liters
 System.out.println(gallons + " gallons is " + liters + " liters.");
 }
}

O/P:
10.0 gallons is 37.854 liters.

The Java Keywords
There are 50 keywords currently defined in the Java language. These keywords, combined with the

syntax of the operators and separators, form the foundation of the Java language.

These keywords cannot be used as identifiers. Thus, they cannot be used as names for a variable,

class, or method.

The keywords const and goto are reserved but not used.

Identifiers
Identifiers are used to name things, such as classes, variables, and methods. An identifier may be

any descriptive sequence of uppercase and lowercase letters, numbers, or the underscore and dollar-

sign characters. (The dollar-sign character is not intended for general use.) They must not begin

with a number. Java is case-sensitive, so VALUE is a different identifier than Value. Some

examples of valid identifiers are GalToLit, Test, x, y2, maxLoad, my_var.

Invalid identifier names include these: 12x, not/ok.

UNIT-I 7 KNREDDY

JAVA PROGRAMMING

The Primitive Data Types
Java defines eight primitive types of data: byte, short, int, long, char, float, double, and boolean.

The primitive types are also commonly referred to as simple types .These can be put in four groups:

• Integers This group includes byte, short, int, and long, which are for whole-valued signed

numbers.

All of these are signed, positive and negative values. Java does not support unsigned, positive-only

integers.

// Compute distance light travels using long variables.

import java.util.Scanner;

class Light {

public static void main(String args[]) {

 int days;

 long lightspeed;

 long seconds;

 long distance;

 // approximate speed of light in miles per second

 lightspeed = 186000;

 Scanner sc=new Scanner(System.in);

 System.out.println("Enter number of days");

 days=sc.nextInt();

 seconds = days * 24 * 60 * 60; // convert to seconds

 distance = lightspeed * seconds; // compute distance

 System.out.print("In " + days);

 System.out.print(" days light will travel about ");

 System.out.println(distance + " miles.");

 }

}

O/P:

Enter number of days

10

In 10 days light will travel about 160704000000 miles.

UNIT-I 8 KNREDDY

JAVA PROGRAMMING

• Floating-point numbers This group includes float and double, which represent numbers with

fractional precision.

// Compute the area of a circle.
import java.util.Scanner;
class Area {
 public static void main(String args[]) {
 double pi, r, a;
 Scanner input= new Scanner(System.in);
 pi = 3.1416; // pi, approximately
 System.out.println("Enter radius ");
 r=input.nextDouble();
 a = pi * r * r; // compute area
 System.out.println("Area of circle is " + a);
 }
}
O/P:
Enter radius
10.8
Area of circle is 366.436224

• Characters This group includes char, which represents symbols in a character set, like letters and

numbers.

In Java char is a 16-bit type. The range of a char is 0 to 65,535. There are no negative chars.

// Character variables can be handled like integers.
class CharArithDemo {
 public static void main(String[] args) {
 char ch;
 ch = 'X';
 System.out.println("ch contains " + ch);
 ch++; // increment ch
 System.out.println("ch is now " + ch);
 ch = 90; // give ch the value Z
 System.out.println("ch is now " + ch);
 }
}
O/P:
ch contains X
ch is now Y
ch is now Z

UNIT-I 9 KNREDDY

JAVA PROGRAMMING

• Boolean This group includes boolean, which is a special type for representing true/false values.

// Demonstrate boolean values.

class BoolDemo {

 public static void main(String[] args) {

 boolean b;

 b = false;

 System.out.println("b is " + b);

 b = true;

 System.out.println("b is " + b);

 // a boolean value can control the if statement

 if(b) System.out.println("This is executed.");

 b = false;

 if(b) System.out.println("This is not executed.");

 // outcome of a relational operator is a boolean value

 System.out.println("10 > 9 is " + (10 > 9));

 }

}

O/P:

b is false

b is true

This is executed.

10 > 9 is true

Literals are also commonly called constants

Java provides special escape sequences sometimes referred to as backslash character constants

Escape
Sequence Character
\n newline
\t tab
\b backspace
\f form feed
\r return
\" " (double quote)
\' ' (single quote)
\\ \ (back slash)

\uDDDD character from the Unicode character set
(DDDD is four hex digits)

UNIT-I 10 KNREDDY

JAVA PROGRAMMING

Operators:
An operator is a symbol that tells the compiler to perform a specific mathematical, logical, or other

manipulation. Java has four general classes of operators: arithmetic, bitwise, relational, and logical.

Java also defines some additional operators that handle certain special situations.

Arithmetic Operators
Arithmetic operators are used in mathematical expressions in the same way that they are used in

algebra. The following table lists the arithmetic operators:

Operator Meaning
+ Addition(also unary plus)
- Subtraction(also unary minus)
* Multiplication
/ Division

% Modulus
++ Increment
-- Decrement

The operands of the arithmetic operators must be of a numeric type. We cannot use them on

boolean types, but we can use them on char types, since the char type in Java is, essentially, a

subset of int.

When the division operator is applied to an integer type, there will be no fractional component

attached to the result. The modulus operator, %, returns the remainder of a division operation. It

can be applied to floating-point types as well as integer types.

// Demonstrate the % operator.

class ModDemo {

 public static void main(String[] args) {

 int iresult, irem;

 double dresult, drem;

 iresult = 10 / 3;

 irem = 10 % 3;

 dresult = 10.0 / 3.0;

 drem = 10.0 % 3.0;

 System.out.println("Result and remainder of 10 / 3: " + iresult + " " + irem);

 System.out.println("Result and remainder of 10.0 / 3.0: " + dresult + " " + drem);

 }

}

O/P:

Result and remainder of 10 / 3: 3 1

Result and remainder of 10.0 / 3.0: 3.3333333333333335 1.0

UNIT-I 11 KNREDDY

JAVA PROGRAMMING

Increment and Decrement

The increment operator increases its operand by one. The decrement operator decreases its operand

by one. For example, this statement: x = x + 1;

can be rewritten like this by use of the increment operator: x++;

Similarly, this statement: x = x - 1;

is equivalent to x--;

Both increment and decrement operators can either prefix or postfix the operand.

There is no difference between the prefix and postfix forms. However, when the increment and/or

decrement operators are part of a larger expression, there is an important difference between these

two forms appears. In the prefix form, the operand is incremented or decremented before the value

is obtained for use in the expression. In postfix form, the previous value is obtained for use in the

expression, and then the operand is modified

EG:

x=10;

y=++x;

in this case y will be set to 11

x=10;

y=x++;

then y will be set to 10

// Demonstrate ++.
class IncDec {

public static void main(String args[]) {
int a = 1;
int b = 2;
int c;
int d;
c = ++b;
d = a++;
c++;
System.out.println("a = " + a);
System.out.println("b = " + b);
System.out.println("c = " + c);
System.out.println("d = " + d);

 }
}
The output of this program follows:
a = 2
b = 3
c = 4
d = 1

UNIT-I 12 KNREDDY

JAVA PROGRAMMING

Relational and Logical Operators
The relational operators determine the relationship that one operand has to the other.

Operator Meaning

== Equal to

!= Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

The outcome of these operations is a boolean value.

Java does not define true and false in the same way as C/C++. In C/ C++, true is any nonzero value

and false is zero. In Java, true and false are nonnumeric values that do not relate to zero or

nonzero. Therefore, to test for zero or nonzero, you must explicitly employ one or more of the

relational operators

Logical operators combine two boolean values to form a resultant Boolean value.

Operator Meaning

& AND

| OR

^ XOR

|| Short-circuit OR

&& Short-circuit AND

! NOT

The logical Boolean operators, &, |, and ^, operate on boolean values in the same way that they

operate on the bits of an integer. The logical ! operator inverts the Boolean state: !true == false and

!false == true. The following table shows the effect of each logical operation:

UNIT-I 13 KNREDDY

JAVA PROGRAMMING

// Demonstrate the relational and logical operators.
class RelLogOps {
 public static void main(String [] args) {
 int i, j;
 boolean b1, b2;
 i = 10;
 j = 11;
 if(i < j)

System.out.println("i < j");
 if(i <= j)

System.out.println("i <= j");
 if(i != j)

System.out.println("i != j");
 if(i == j)

System.out.println("this won't execute");
 if(i >= j)

System.out.println("this won't execute");
 if(i > j)

System.out.println("this won't execute");
 b1 = true;
 b2 = false;
 if(b1 & b2)

System.out.println("this won't execute");
 if(!(b1 & b2))

System.out.println("!(b1 & b2) is true");
 if(b1 | b2)

 System.out.println("b1 | b2 is true");
 if(b1 ^ b2)

System.out.println("b1 ^ b2 is true");
 }
}
O/P:
i < j
i <= j
i != j
!(b1 & b2) is true
b1 | b2 is true
b1 ^ b2 is true

UNIT-I 14 KNREDDY

JAVA PROGRAMMING

Short-circuit Logical operators:

These are secondary versions of the Boolean AND and OR operators, and are commonly known as

short-circuit logical operators.

The difference between normal and short-circuit versions is that the normal operands will always

evaluate each operand, but short-circuit versions will evaluate the second operand only when

necessary.

When the right-hand operand depends on the value of the left one in order to function properly. For

example, the following code fragment shows how you can take advantage of short-circuit logical

evaluation to be sure that a division operation will be valid before evaluating it:

if (denom != 0 && num / denom > 10)

Since the short-circuit form of AND (&&) is used, there is no risk of causing a run-time exception

when denom is zero. If this line of code were written using the single &version of AND, both sides

would be evaluated, causing a run-time exception when denom is zero.

// Demonstrate the short-circuit operators.

class SCops {

 public static void main(String[] args) {

 int n, d, q;

 n = 10;

 d = 2;

 if(d != 0 && (n % d) == 0)

 System.out.println(d + " is a factor of " + n);

 d = 0; // now, set d to zero

 // Since d is zero, the second operand is not evaluated.

 if(d != 0 && (n % d) == 0)

 System.out.println(d + " is a factor of " + n);

 /* Now, try same thing without short-circuit operator.

 This will cause a divide-by-zero error.

 */

 if(d != 0 & (n % d) == 0)

 System.out.println(d + " is a factor of " + n);

 }

}

UNIT-I 15 KNREDDY

JAVA PROGRAMMING

Assignment operators:

The assignment operator is the single equal sign, =.

It has this general form: var = expression;

Here, the type of var must be compatible with the type of expression.

int x, y, z;

x = y = z = 100; // set x, y, and z to 100

This fragment sets the variables x, y, and z to 100 using a single statement.

Java provides special operators that can be used to combine an arithmetic operation with an

assignment.

a = a + 4; can rewrite as: a += 4;

There are compound assignment operators for all of the arithmetic, binary operators.

Thus, any statement of the form var = var op expression; can be rewritten as var op= expression;

Operator Precedence

The following table shows the order of precedence for Java operators, from highest to lowest.

Operators in the same row are equal in precedence. In binary operations, the order of evaluation is

left to right (except for assignment, which evaluates right to left). Although they are technically

separators, the [], (), and . can also act like operators. In that capacity, they would have the highest

precedence.

The Precedence of the Java Operators

Using Parentheses

Parentheses raise the precedence of the operations that are inside them.

UNIT-I 16 KNREDDY

JAVA PROGRAMMING

The Bitwise Operators

Java defines several bitwise operators that can be applied to the integer types, long, int, short,

char, and byte. These operators act upon the individual bits of their operands.

They are summarized in the following table:

The Bitwise Logical Operators

The bitwise logical operators are &, |, ^, and ~. The following table shows the outcome of each

operation.

// Uppercase letters.
class UpCase {
 public static void main(String[] args) {
 char ch;
 for(int i=0; i < 10; i++) {
 ch = (char) ('a' + i);
 System.out.print(ch);
 // This statement turns off the 6th bit.
 ch = (char) ((int) ch & 65503); // ch is now uppercase
 System.out.print(ch + " ");
 }
 }
}
O/P:
aA bB cC dD eE fF gG hH iI jJ

UNIT-I 17 KNREDDY

JAVA PROGRAMMING

// Lowercase letters.
class LowCase {
 public static void main(String[] args) {
 char ch;
 for(int i=0; i < 10; i++) {
 ch = (char) ('A' + i);
 System.out.print(ch);
 // This statement turns on the 6th bit.
 ch = (char) ((int) ch | 32); // ch is now lowercase
 System.out.print(ch + " ");
 }
 }
}
O/P:
Aa Bb Cc Dd Ee Ff Gg Hh Ii Jj
The Left Shift

The left shift operator, <<, shifts all of the bits in a value to the left a specified number of times. It

has this general form:

value << num Here, num specifies the number of positions to left-shift the value in value.

The Right Shift

The right shift operator, >>, shifts all of the bits in a value to the right a specified number of times.

Its general form is shown here:

value >> num Here, num specifies the number of positions to right-shift the value in value.

The ? Operator

Java includes a special ternary (three-way) operator that can replace certain types of if-then- else

statements. This operator is the ?.

The ? has this general form:

expression1 ? expression2 : expression3

Here, expression1 can be any expression that evaluates to a boolean value. If expression1 is true,

then expression2 is evaluated; otherwise, expression3 is evaluated.

import java.util.Scanner;
public class Largest
{
 public static void main(String[] args)
 {
 int a, b, c, d;
 Scanner s = new Scanner(System.in);
 System.out.println("Enter all three numbers:");
 a = s.nextInt();
 b = s.nextInt();
 c = s.nextInt();
 d = a>b?(a>c?a:c):(b>c?b:c);
 System.out.println("Largest of "+a+","+b+","+c+" is: "+d);
 }
}

UNIT-I 18 KNREDDY

JAVA PROGRAMMING

Control Statements
A programming language uses control statements to cause the flow of execution to advance and

branch based on changes to the state of a program. Java’s program control statements can be put

into the following categories: Selection, Iteration and Jump.

Selection statements allow your program to choose different paths of execution based upon the

outcome of an expression or the state of a variable. Iteration statements enable program execution

to repeat one or more statements (that is, iteration statements form loops). Jump statements allow

your program to execute in a nonlinear fashion.

Input characters from the keyboard

To read a character from keyboard we can use System.in.read (). The read() waits until the user

presses a key and then returns the result. The character returned as an integer, so it must be cast

into a char to assign it to a char variable.

// Read a character from the keyboard.

class KbIn {

 public static void main(String[] args)

 throws java.io.IOException {

 char ch;

 System.out.print("Press a key followed by ENTER: ");

 ch = (char) System.in.read(); // get a char

 System.out.println("Your key is: " + ch);

 }

}

O/P:
Press a key followed by ENTER: k
Your key is: k
The above program uses throws java.io.IOException .This line is necessary to handle input errors.

It is a part of java exception handling mechanism.

if statement:

The if statement is Java’s conditional branch statement. It can be used to route program execution

through two different paths. Here is the general form of the if statement:

if (condition) statement1;

else statement2;

Here, each statement may be a single statement or a compound statement enclosed in curly braces

(that is, a block). The condition is any expression that returns a boolean value. The else clause is

optional.

UNIT-I 19 KNREDDY

JAVA PROGRAMMING

// Guess the letter game.
class Guess {
 public static void main(String[] args)
 throws java.io.IOException {
 char ch, answer = 'K';
 System.out.println("I'm thinking of a letter between A and Z.");
 System.out.print("Can you guess it: ");
 ch = (char) System.in.read(); // read a char from the keyboard
 if(ch == answer) System.out.println("** Right **");
 }
}
The next version uses else to print a message when the wrong letter is picked

// Guess the letter game, 2nd version.
class Guess2 {
 public static void main(String[] args)
 throws java.io.IOException {
 char ch, answer = 'K';
 System.out.println("I'm thinking of a letter between A and Z.");
 System.out.print("Can you guess it: ");
 ch = (char) System.in.read(); // get a char
 if(ch == answer) System.out.println("** Right **");
 else System.out.println("...Sorry, you're wrong.");
 }
}
Nested ifs

A nested if is an if statement that is the target of another if or else. When you nest ifs, the main

thing to remember is that an else statement always refers to the nearest if statement that is within

the same block as the else and that is not already associated with an else.

The if-else-if Ladder

A common programming construct that is based upon a sequence of nested ifs is the if else-if

ladder. It looks like this:

if(condition)
statement;

else if(condition)
statement;

else if(condition)
statement;

...
else

statement;

UNIT-I 20 KNREDDY

JAVA PROGRAMMING

The if statements are executed from the top down. As soon as one of the conditions controlling the

if is true, the statement associated with that if is executed, and the rest of the ladder is bypassed. If

none of the conditions is true, then the final else statement will be executed. The final else acts as a

default condition;

// Demonstrate an if-else-if ladder.
class Ladder {
 public static void main(String[] args) {
 int x;
 for(x=0; x<6; x++) {
 if(x==1)
 System.out.println("x is one");
 else if(x==2)
 System.out.println("x is two");
 else if(x==3)
 System.out.println("x is three");
 else if(x==4)
 System.out.println("x is four");
 else
 System.out.println("x is not between 1 and 4");
 }
 }
}
O/P:
x is not between 1 and 4
x is one
x is two
x is three
x is four
x is not between 1 and 4
switch

The switch provides for a multi-way branch. It often provides a better alternative than a large series

of if-else-if statements.

Here is the general form of a switch statement:

UNIT-I 21 KNREDDY

JAVA PROGRAMMING

// Demonstrate the switch.
class SwitchDemo {
 public static void main(String[] args) {
 int i;
 for(i=0; i<10; i++)
 switch(i) {
 case 0: System.out.println("i is zero");
 break;
 case 1: System.out.println("i is one");
 break;
 case 2: System.out.println("i is two");
 break;
 case 3: System.out.println("i is three");
 break;
 case 4: System.out.println("i is four");
 break;
 default: System.out.println("i is five or more");
 }
 }
}

The break statement is optional. If you omit the break, execution will continue on into the next

case.

Nested switch Statements

We can use a switch as part of the statement sequence of an outer switch. This is called a nested

switch. Since a switch statement defines its own block, no conflicts arise between the case

constants in the inner switch and those in the outer switch. For example, the following fragment is

perfectly valid:

switch(count) {

case 1:switch(target) { // nested switch

case 0: System.out.println("target is zero");

break;

case 1: // no conflicts with outer switch

System.out.println("target is one");

break;

}

break;

case 2: // …

UNIT-I 22 KNREDDY

JAVA PROGRAMMING

In summary, there are three important features of the switch statement to note:

• The switch differs from the if in that switch can only test for equality, whereas if can evaluate any

type of Boolean expression. That is, the switch looks only for a match between the value of the

expression and one of its case constants.

• No two case constants in the same switch can have identical values. Of course, a switch

statement and an enclosing outer switch can have case constants in common.

• A switch statement is usually more efficient than a set of nested ifs.

Iteration Statements
Java’s iteration statements are for, while, and do-while.

while

The while loop is Java’s most fundamental loop statement. It repeats a statement or block while its

controlling expression is true. Here is its general form:

while(condition) {

// body of loop

}

The condition can be any Boolean expression. The body of the loop will be executed as long as the

conditional expression is true. When condition becomes false, control passes to the next line of

code immediately following the loop. The curly braces are unnecessary if only a single statement is

being repeated

// Demonstrate the while loop.
class WhileDemo {
 public static void main(String[] args) {
 char ch;
 // print the alphabet using a while loop
 ch = 'a';
 while(ch <= 'z') {
 System.out.print(ch);
 ch++;
 }
 }
}
do-while

The do-while loop always executes its body at least once, because its conditional expression is at

the bottom of the loop. Its general form is

do {
// body of loop
} while (condition);
The do-while loop is especially useful when you process a menu selection, because you will

usually want the body of a menu loop to execute at least once.

UNIT-I 23 KNREDDY

JAVA PROGRAMMING

for loop

The general form of the traditional for statement:

for(initialization; condition; iteration) {
// body
}
// Show square roots of 1 to 9.
class SqrRoot {
 public static void main(String[] args) {
 double num, sroot;
 for(num = 1.0; num < 10.0; num++) {
 sroot = Math.sqrt(num);
 System.out.println("Square root of " + num +
 " is " + sroot);
 }
 }
}
Some variations on for loop:

 It is possible to declare the variable inside the initialization portion of the for.

 // compute the sum and product of the numbers 1 through 5
 for(int i = 1; i <= 5; i++) {
 sum += i; // i is known throughout the loop
 product *= i;
 }
When you declare a variable inside a for loop, there is one important point to remember: the scope

of that variable ends when the for statement does.

 When using multiple loop control variables the initialization and iteration expressions for each

variable are separated by commas.

 for(i=0, j=10; i < j; i++, j--)
 System.out.println("i and j: " + i + " " + j);
 It is possible for any or all of the initialization, condition, or iteration portions of the for loop to

be blank.

i = 0; // move initialization out of loop
 for(; i < 10;) {
 System.out.println("Pass #" + i);
 i++; // increment loop control var
}

NESTED LOOPS:

Java allows loops to be nested. That is, one loop may be inside another.

for(i=0; i<=5; i++) {
for(j=1; j<=i; j++)

System.out.print("*");
System.out.println();

}

UNIT-I 24 KNREDDY

JAVA PROGRAMMING

Using break
In Java, the break statement has three uses. First, as you have seen, it terminates a statement
sequence in a switch statement. Second, it can be used to exit a loop. Third, it can be used as a
“civilized” form of goto.
Using break to Exit a Loop: By using break, you can force immediate termination of a loop,
bypassing the conditional expression and any remaining code in the body of the loop.
// Using break to exit a loop.
class BreakDemo {
 public static void main(String[] args) {
 int num;
 num = 100;
 // loop while i-squared is less than num
 for(int i=0; i < num; i++) {
 if(i*i >= num) break; // terminate loop if i*i >= 100
 System.out.print(i + " ");
 }
 System.out.println("Loop complete.");
 }
}
When used inside a set of nested loops, the break statement will only break out of the innermost

loop

Using break as a Form of Goto: The break statement can also be employed by itself to provide a
“civilized” form of the goto statement.
The general form of the labeled break statement is shown here:

break label;
// Using break with a label.
class Break4 {
 public static void main(String[] args) {
 int i;
 for(i=1; i<4; i++) {
one: {
two: {
three: {
 System.out.println("\ni is " + i);
 if(i==1) break one;
 if(i==2) break two;
 if(i==3) break three;
 // this is never reached
 System.out.println("won't print");
 }
 System.out.println("After block three.");
 }
 System.out.println("After block two.");
 }
 System.out.println("After block one.");
 }
 System.out.println("After for.");
 }
}

UNIT-I 25 KNREDDY

JAVA PROGRAMMING

Using continue

It is possible to force an early iteration of a loop, bypassing the loop’s normal control structure.

This is accomplished using continue. The continue statement forces the next iteration of the loop to

take place, skipping any code between itself and the conditional expression that controls the loop.

// Use continue.
class ContDemo {
 public static void main(String[] args) {
 int i;
 // print even numbers between 0 and 100
 for(i = 0; i<=100; i++) {
 if((i%2) != 0) continue; // iterate
 System.out.println(i);
 }
 }
}
As with the break statement, continue may specify a label to describe which enclosing loop to

continue. Here is an example program that uses continue to print a triangular multiplication table

for 0 through 9:

// Using continue with a label.
class ContinueLabel {

public static void main(String args[]) {
outer: for (int i=0; i<10; i++) {

for(int j=0; j<10; j++) {
if(j > i) {

System.out.println();
continue outer;

}
System.out.print(" " + (i * j));

}
 }
 System.out.println();

}
}
The continue statement in this example terminates the loop counting j and continues with the next

iteration of the loop counting i. Here is the output of this program:

return

The last control statement is return. The return statement is used to explicitly return from a

method. That is, it causes program control to transfer back to the caller of the method.

UNIT-I 26 KNREDDY

JAVA PROGRAMMING

ARRAYS:

An array is a collection of variables of same type, referred to by a common name. Arrays of any

type can be created and may have one or more dimensions. A specific element in an array is

accessed by its index. Arrays offer a convenient means of grouping related information.

One-Dimensional Arrays

A one-dimensional array is, essentially, a list of like-typed variables.

The general form to declare a one-dimensional array:

type[] array-name=new type[size];

Since arrays are implemented as objects, the creation of an array is a two-step process. First declare

an array reference variable. Second allocate memory for the array, assigning the reference to that

memory to the array. Thus arrays in java are dynamically allocated using new operator.

Eg : int[] sample=new int[10];

It is possible to break the above declaration.

int[] sample;

sample=new int[10];

// Demonstrate a one-dimensional array.

class ArrayDemo {

 public static void main(String[] args) {

 int[] sample = new int[10];

 int i;

 for(i = 0; i < 10; i = i+1)

 sample[i] = i;

 for(i = 0; i < 10; i = i+1)

 System.out.println("This is sample[" + i + "]: " + sample[i]);

 }

}

O/P:

This is sample[0]: 0
This is sample[1]: 1
This is sample[2]: 2
This is sample[3]: 3
This is sample[4]: 4
This is sample[5]: 5
This is sample[6]: 6
This is sample[7]: 7
This is sample[8]:8
This is sample[9]:9

UNIT-I 27 KNREDDY

JAVA PROGRAMMING

// Find the minimum and maximum values in an array.

class MinMax {

 public static void main(String[] args) {

 int[] nums = new int[10];

 int min, max;

 nums[0] = 99;

 nums[1] = -10;

 nums[2] = 100123;

 nums[3] = 18;

 nums[4] = -978;

 nums[5] = 5623;

 nums[6] = 463;

 nums[7] = -9;

 nums[8] = 287;

 nums[9] = 49;

 min = max = nums[0];

 for(int i=1; i < 10; i++) {

 if(nums[i] < min) min = nums[i];

 if(nums[i] > max) max = nums[i];

 }

 System.out.println("min and max: " + min + " " + max);

 }

}

// Use array initializers.

class MinMax2 {

 public static void main(String[] args) {

 int[] nums = { 99, -10, 100123, 18, -978, 5623, 463, -9, 287, 49 };

 int min, max;

 min = max = nums[0];

 for(int i=1; i < 10; i++) {

 if(nums[i] < min) min = nums[i];

 if(nums[i] > max) max = nums[i];

 }
 System.out.println("Min and max: " + min + " " + max);
 }
}

UNIT-I 28 KNREDDY

JAVA PROGRAMMING

Multidimensional Arrays:

Two-dimensional arrays:

A two dimensional array is a list of one-dimensional array. A two dimensional array can be thought

of as creating a table of data organized by row and column. An individual item of data is accessed

by specifying its row and column position.

To declare a two dimensional array, we must specify two dimensions.

int[] [] table=new int[10] [20];

// Demonstrate a two-dimensional array.
class TwoD {
 public static void main(String[] args) {
 int t, i;
 int[][] table = new int[3][4];
 for(t=0; t < 3; ++t) {
 for(i=0; i < 4; ++i) {
 table[t][i] = (t*4)+i+1;
 System.out.print(table[t][i] + " ");
 }
 System.out.println();
 }
 }
}

O/P:
1 2 3 4
5 6 7 8
9 10 11 12

Irregular arrays:

When allocating memory for multi dimensional arrays we need to specify only the memory for the

first dimension. We can allocate the remaining dimensions separately.

// Manually allocate differing size second dimensions.

class Ragged {

 public static void main(String[] args) {

 int[][] riders = new int[7][];
 riders[0] = new int[10];
 riders[1] = new int[10];
 riders[2] = new int[10];
 riders[3] = new int[10];
 riders[4] = new int[10];
 riders[5] = new int[2];
 riders[6] = new int[2];
 int i, j;

UNIT-I 29 KNREDDY

JAVA PROGRAMMING

 // fabricate some data
 for(i=0; i < 5; i++)
 for(j=0; j < 10; j++)
 riders[i][j] = i + j + 10;
 for(i=5; i < 7; i++)
 for(j=0; j < 2; j++)
 riders[i][j] = i + j + 10;
 System.out.println("Riders per trip during the week:");
 for(i=0; i < 5; i++) {
 for(j=0; j < 10; j++)
 System.out.print(riders[i][j] + " ");
 System.out.println();
 }
 System.out.println();
 System.out.println("Riders per trip on the weekend:");
 for(i=5; i < 7; i++) {
 for(j=0; j < 2; j++)
 System.out.print(riders[i][j] + " ");
 System.out.println();
 }
 }
}

Initializing multi dimensional array:
A multidimensional array can be initialized by enclosing each dimension’s initialize list within its
own set of braces.
// Initialize a two-dimensional array.
class Squares {
 public static void main(String[] args) {
 int[][] sqrs = {
 { 1, 1 },
 { 2, 4 },
 { 3, 9 },
 { 4, 16 },
 { 5, 25 },
 { 6, 36 },
 { 7, 49 },
 { 8, 64 },
 { 9, 81 },
 { 10, 100 }
 };
 int i, j;
 for(i=0; i < 10; i++) {
 for(j=0; j < 2; j++)
 System.out.print(sqrs[i][j] + " ");
 System.out.println();
 }
 }
}

UNIT-I 30 KNREDDY

JAVA PROGRAMMING

Using the length member:

Because arrays are implemented as objects, each array has associated with it a length instance

variable that contains the number of elements that the array can hold. In other words length

contains the size of the array.

// Use the length array member.

class LengthDemo {

 public static void main(String[] args) {

 int[] list = new int[10];

 int[] nums = { 1, 2, 3 };

 int[][] table = { // a variable-length table

 {1, 2, 3},

 {4, 5},

 {6, 7, 8, 9}

 };

 System.out.println("length of list is " + list.length);

 System.out.println("length of nums is " + nums.length);

 System.out.println("length of table is " + table.length);

 System.out.println("length of table[0] is " + table[0].length);

 System.out.println("length of table[1] is " + table[1].length);

 System.out.println("length of table[2] is " + table[2].length);

 System.out.println();

 // use length to initialize list

 for(int i=0; i < list.length; i++)

 list[i] = i * i;

 System.out.print("Here is list: ");

 // now use length to display list

 for(int i=0; i < list.length; i++)

 System.out.print(list[i] + " ");

 System.out.println();

 }

}

UNIT-I 31 KNREDDY

JAVA PROGRAMMING

The for-each style for loop:

A for-each style loop is designed to cycle through a collection of objects, such as an array, in

strictly sequential fashion, from start to finish.

The for-each style of for is also referred to as the enhanced for loop.

The general form of the for-each version of the for is:

for(type itr-var: collection) statement-block

Here, type specifies the type and itr-var specifies the name of an iteration variable that will receive

the elements from a collection, one at a time, from beginning to end. The collection being cycled

through is specified by collection.

Because the iteration variable receives values from the collection, type must be the same as (or

compatible with) the elements stored in the collection.

EG: compute the sum of the values in an array:

Int[] nums= { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

int sum = 0;

for(int i=0; i < 10; i++) sum += nums[i];

The for-each style for automates the preceding loop. Specifically, it eliminates the need to establish

a loop counter, specify a starting and ending value, and manually index the array. Instead, it

automatically cycles through the entire array, obtaining one element at a time, in sequence, from

beginning to end. For example, here is the preceding fragment rewritten using a for-each version of

the for:

Int[] nums= { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

int sum = 0;

for(int x: nums) sum += x;

With each pass through the loop, x is automatically given a value equal to the next element in

nums. Thus, on the first iteration, x contains 1; on the second iteration, x contains 2; and so on.

// Use a for-each style for loop.
class ForEach {
 public static void main(String[] args) {
 int[] nums = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
 int sum = 0;
 // Use for-each style for to display and sum the values.
 for(int x : nums) {
 System.out.println("Value is: " + x);
 sum += x;
 }
 System.out.println("Summation: " + sum);
 }
}

UNIT-I 32 KNREDDY

JAVA PROGRAMMING

There is one important point to understand about the for-each style loop. Its iteration variable is

“read-only” as it relates to the underlying array. An assignment to the iteration variable has no

effect on the underlying array.

// The for-each loop is essentially read-only.

class NoChange {

 public static void main(String[] args) {

 int[] nums = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

 for(int x : nums) {

 System.out.print(x + " ");

 x = x * 10; // no effect on nums

 }

 System.out.println();

 for(int x : nums)

 System.out.print(x + " ");

 System.out.println();

 }

}

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

Iterating Over Multidimensional Arrays

The enhanced version of the for also works on multidimensional arrays.

// Use for-each style for on a two-dimensional array.
class ForEach2 {
 public static void main(String[] args) {
 int sum = 0;
 int[][] nums = new int[3][5];
 // give nums some values
 for(int i = 0; i < 3; i++)
 for(int j=0; j < 5; j++)
 nums[i][j] = (i+1)*(j+1);
 // Use for-each for loop to display and sum the values.
 for(int[] x : nums) {
 for(int y : x) {
 System.out.println("Value is: " + y);
 sum += y;
 }
 }
 System.out.println("Summation: " + sum);
 }
}

UNIT-I 33 KNREDDY

JAVA PROGRAMMING

O/P:
Value is: 1
Value is: 2
Value is: 3
Value is: 4
Value is: 5
Value is: 2
Value is: 4
Value is: 6
Value is: 8
Value is: 10
Value is: 3
Value is: 6
Value is: 9
Value is: 12
Value is: 15
Summation: 90

// Search an array using for-each style for.
import java.util.Scanner;
public class Search {
 public static void main(String[] args) {
 int[] nums = { 6, 8, 3, 7, 5, 6, 1, 4 };
 int val;
 Scanner a=new Scanner(System.in);
 System.out.println("Enter a number to search");
 val=a.nextInt();
 boolean found = false;
 // Use for-each style for to search nums for val.
 for(int x : nums) {
 if(x == val) {
 found = true;
 break;
 }
 }
 if(found)
 System.out.println("Value found!");
 else
 System.out.println("Value not found!");
 }
 }

O/P:
Enter a number to search
8
Value found!

Enter a number to search
10
Value not found!

UNIT-I 34 KNREDDY

JAVA PROGRAMMING

STRINGS:

One of the most important data type in java is String. String defines and supports character sting.

In java strings are objects

Constructing strings:

String str= new String(“HELLO”);

This creates a String object called str that contains the character string “HELLO”.

A string can be constructed from another string

String str2= new String(str);

Another easy way to create a string is

String str=”Java strings are powerful”;

// Introduce String.

class StringDemo {

 public static void main(String[] args) {

 // declare strings in various ways

 String str1 = new String("Java strings are objects.");

 String str2 = "They are constructed various ways.";

 String str3 = new String(str2);

 System.out.println(str1);

 System.out.println(str2);

 System.out.println(str3);

 }

}

Operating on strings:

The String class contains several methods that operate on strings.

boolean equals(str) Returns true if the invoking string contains the same character sequence as str

int length() Returns the number of characters in the string

char charAt(index) Returns the character at the index specified by index

int compareTo(str) Returns less than zero if the invoking string is less than str, greater than zero if

the the invoking string is greater than str, and zero if the strings are equal

int indexOf(str) Searches the invoking string for the substring specified by str. Returns the index

of the first match or -1 on failure

int lastIndexOf(str) Searches the invoking string for the substring specified by str. Returns the index

of the last match or -1 on failure

UNIT-I 35 KNREDDY

JAVA PROGRAMMING

// Some String operations.

class StrOps {

 public static void main(String[] args) {

 String str1 = "When it comes to Web programming, Java is #1.";

 String str2 = new String(str1);

 String str3 = "Java strings are powerful.";

 int result, idx;

 char ch;

 System.out.println("Length of str1: " + str1.length());

 for(int i=0; i < str1.length(); i++) // display str1, one char at a time.

 System.out.print(str1.charAt(i));

 System.out.println();

 if(str1.equals(str2))

 System.out.println("str1 equals str2");

 else

 System.out.println("str1 does not equal str2");

 if(str1.equals(str3))

 System.out.println("str1 equals str3");

 else

 System.out.println("str1 does not equal str3");

 result = str1.compareTo(str3);

 if(result == 0)

 System.out.println("str1 and str3 are equal");

 else if(result < 0)

 System.out.println("str1 is less than str3");

 else

 System.out.println("str1 is greater than str3");

 // assign a new string to str2

 str2 = "One Two Three One";

 idx = str2.indexOf("One");

 System.out.println("Index of first occurrence of One: " + idx);

 idx = str2.lastIndexOf("One");

 System.out.println("Index of last occurrence of One: " + idx);

 }

}

UNIT-I 36 KNREDDY

JAVA PROGRAMMING

Array of strings:

// Demonstrate String arrays.

class StringArrays {

 public static void main(String[] args) {

 String[] strs = { "This", "is", "a", "test." };

 System.out.println("Original array: ");

 for(String s : strs)

 System.out.print(s + " ");

 System.out.println("\n");

 // change a string in the array

 strs[1] = "was";

 strs[3] = "test, too!";

 System.out.println("Modified array: ");

 for(String s : strs)

 System.out.print(s + " ");

 }

}

// Use substring().

class SubStr {

 public static void main(String[] args) {

 String orgstr = "Java makes the Web move.";

 // construct a substring

 String substr = orgstr.substring(5, 18);

 System.out.println("orgstr: " + orgstr);

 System.out.println("substr: " + substr);

 }

}

UNIT-I 37 KNREDDY

JAVA PROGRAMMING

// Use a string to control a switch statement.

class StringSwitch {

 public static void main(String[] args) {

 String command = "cancel";

 switch(command) {

 case "connect": System.out.println("Connecting");

 // ...

 break;

 case "cancel": System.out.println("Canceling");

 // ...

 break;

 case "disconnect": System.out.println("Disconnecting");

 // ...

 break;

 default: System.out.println("Command Error!");

 break;

 }

 }

}

Using command line arguments:

// Display all command-line information.

class CLDemo {

 public static void main(String[] args) {

 System.out.println("There are " + args.length + " command-line arguments.");

 System.out.println("They are: ");

 for(int i=0; i<args.length; i++)

 System.out.println("arg[" + i + "]: " + args[i]);

 }

}

UNIT-I 38 KNREDDY

JAVA PROGRAMMING

STRING HANDLING:

The String class is packaged in java.lang. Thus it is automatically available to all programs.

String objects can be constructed in a number of ways, making it easy to obtain a string when

needed.

String Constructors:

// Demonstrate several String constructors.
class StringConsDemo {
 public static void main(String[] args) {
 char[] digits = new char[16];
 // Create an array that contains the digits 0 through 9
 // plus the hexadecimal values A through F.
 for(int i=0; i < 16; i++) {
 if(i < 10) digits[i] = (char) ('0'+i);
 else digits[i] = (char) ('A' + i - 10);
 }
 // Create a string that contains all of the array.
 String digitsStr = new String(digits);
 System.out.println(digitsStr);
 // Create a string the contains a portion of the array.
 String nineToTwelve = new String(digits, 9, 4);
 System.out.println(nineToTwelve);
 // Construct a string from a string.
 String digitsStr2 = new String(digitsStr);
 System.out.println(digitsStr2);
 // Now, create an empty string.
 String empty = new String();
 // This will display nothing:
 System.out.println("Empty string: " + empty);
 }
}
String Concatenation

In general, Java does not allow operators to be applied to String objects. The one exception to this

rule is the + operator, which concatenates two strings, producing a String object as the result.

String age = "9";
String s = "He is " + age + " years old.";
System.out.println (s);
This displays the string “He is 9 years old.”

String Concatenation with Other Data Types
You can concatenate strings with other types of data. For example, consider this slightly different
version of the earlier example:
int age = 9;
String s = "He is " + age + " years old.";
System.out.println (s);
In this case, age is an int rather than another String, but the output produced is the same as before.
This is because the int value in age is automatically converted into its string representation within a
String object.

UNIT-I 39 KNREDDY

JAVA PROGRAMMING

One practical use of string concatenation is found when you are creating very long strings. Instead

of letting long strings wrap around within your source code, you can break them into smaller

pieces, using the + to concatenate them. Here is an example:

// Using concatenation to prevent long lines.
class ConCat {
public static void main(String args[]) {
String longStr = "This could have been " +
"a very long line that would have " +
"wrapped around. But string concatenation " +
"prevents this.";
System.out.println(longStr);
}
}

Character Extraction

The String class provides a number of ways in which characters can be extracted from a String

object

charAt()

To extract a single character from a String, you can refer directly to an individual character via the
charAt() method. It has this general form:

char charAt(int index)
// Demonstrate charAt() and length().

class CharAtAndLength {
 public static void main(String[] args) {
 String str = "Programming is both art and science.";
 // Cycle through all characters in the string.
 for(int i=0; i < str.length(); i++)
 System.out.print(str.charAt(i) + " ");
 System.out.println();
 }
}

getChars()

If you need to extract more than one character at a time, you can use the getChars() method. It has
this general form:

void getChars(int sourceStart, int sourceEnd, char target[], int targetStart)
// getChars()
class GetCharsDemo {
 public static void main(String[] args) {
 String str = "Programming is both art and science.";
 int start = 15;
 int end = 23;
 char[] buf = new char[end - start];
 str.getChars(start, end, buf, 0);
 System.out.println(buf);
 }
}

UNIT-I 40 KNREDDY

JAVA PROGRAMMING

String Comparison

The String class includes a number of methods that compare strings or substrings within strings.

equals() and equalsIgnoreCase()

To compare two strings for equality, use equals(). It has this general form:

boolean equals(Object str)

Here, str is the String object being compared with the invoking String object. It returns true if the

strings contain the same characters in the same order, and false otherwise.

The comparison is case-sensitive.

To perform a comparison that ignores case differences, call equalsIgnoreCase().

When it compares two strings, it considers A-Z to be the same as a-z. It has this general

form:

boolean equalsIgnoreCase(String str)

Here, str is the String object being compared with the invoking String object. It, too, returns true

if the strings contain the same characters in the same order, and false otherwise.

// Demonstrate equals() and equalsIgnoreCase().

class EqualityDemo {
 public static void main(String[] args) {
 String str1 = "table";
 String str2 = "table";
 String str3 = "chair";
 String str4 = "TABLE";
 if(str1.equals(str2))
 System.out.println(str1 + " equals " + str2);
 else
 System.out.println(str1 + " does not equal " + str2);
 if(str1.equals(str3))
 System.out.println(str1 + " equals " + str3);
 else
 System.out.println(str1 + " does not equal " + str3);
 if(str1.equals(str4))
 System.out.println(str1 + " equals " + str4);
 else
 System.out.println(str1 + " does not equal " + str4);
 if(str1.equalsIgnoreCase(str4))
 System.out.println("Ignoring case differences, " + str1 +" equals " + str4);
 else
 System.out.println(str1 + " does not equal " + str4);
 }
}
O/P:
table equals table
table does not equal chair
table does not equal TABLE
Ignoring case differences, table equals TABLE

UNIT-I 41 KNREDDY

JAVA PROGRAMMING

equals() Versus = =
It is important to understand that the equals() method and the == operator perform two different
operations. The equals() method compares the characters inside a String object. The == operator
compares two object references to see whether they refer to the same instance.
// equals() vs = =
class EqualsNotEqualTo {

public static void main(String args[]) {
String s1 = "Hello";
String s2 = new String(s1);
System.out.println(s1 + " equals " + s2 + " −> " +
s1.equals(s2));
System.out.println(s1 + " == " + s2 + " −> " + (s1 == s2));

}
}
The variable s1 refers to the String instance created by “Hello”. The object referred to by s2 is
created with s1 as an initializer. Thus, the contents of the two String objects are identical, but they
are distinct objects. This means that s1 and s2 do not refer to the same objects and are, therefore,
not = =, as is shown here by the output of the preceding example:
Hello equals Hello −> true
Hello == Hello −> false

regionMatches()

The regionMatches() method compares a specific region inside a string with another specific

region in another string. Here are the general forms for two methods:

boolean regionMatches(int startIndex, String str2,

int str2StartIndex, int numChars)

boolean regionMatches(boolean ignoreCase,

int startIndex, String str2,

int str2StartIndex, int numChars)

// Demonstrate RegionMatches.

class CompareRegions {

 public static void main(String[] args) {

 String str1 = "Standing at river's edge.";

 String str2 = "Running at river's edge.";

 if(str1.regionMatches(9, str2, 8, 12))

 System.out.println("Regions match.");

 if(!str1.regionMatches(0, str2, 0, 12))

 System.out.println("Regions do not match.");

 }

}
O/P:
Regions match.
Regions do not match.

UNIT-I 42 KNREDDY

JAVA PROGRAMMING

startsWith() and endsWith()

The startsWith() method determines whether a given String begins with a specified string.

Conversely, endsWith() determines whether the String in question ends with a specified string.

They have the following general forms:

boolean startsWith(String str)

boolean endsWith(String str)

A second form of startsWith(), shown here, lets you specify a starting point:

boolean startsWith(String str, int startIndex)

compareTo() and compareToIgnoreCase()

It has this general form:

int compareTo(String str)

Here, str is the String being compared with the invoking String. The result of the comparison is

returned and is interpreted as shown here:

Value Meaning
Less than zero The invoking string is less than str
Greater than zero The invoking string is greater than str
Zero The two strings are equal.

If you want to ignore case differences when comparing two strings, use compareToIgnoreCase(),

as shown here:

int compareToIgnoreCase(String str)

substring()

You can extract a substring using substring(). It has two forms. The first is

String substring(int startIndex)

Here, startIndex specifies the index at which the substring will begin. This form returns a copy of

the substring that begins at startIndex and runs to the end of the invoking string.

The second form of substring() allows you to specify both the beginning and ending index of the

substring:

String substring(int startIndex, int endIndex)

Here, startIndex specifies the beginning index, and endIndex specifies the stopping point

replace()

The replace() method has two forms. The first replaces all occurrences of one character in the

invoking string with another character. It has the following general form:

String replace(char original, char replacement)

Here, original specifies the character to be replaced by the character specified by replacement. The

resulting string is returned. For example,

String s = "Hello".replace('l', 'w');

UNIT-I 43 KNREDDY

JAVA PROGRAMMING

puts the string “Hewwo” into s.

The second form of replace() replaces one character sequence with another. It has this general

form:

String replace(CharSequence original, CharSequence replacement)

trim()

The trim() method returns a copy of the invoking string from which any leading and trailing

whitespace has been removed. It has this general form:

String trim()

Eg: String str=” gamma “;

After str=str.trim();

Str will contain only the string”gamma”

Changing the Case of Characters Within a String

The method toLowerCase() converts all the characters in a string from uppercase to lowercase.

The toUpperCase() method converts all the characters in a string from lowercase to uppercase.

Nonalphabetical characters, such as digits, are unaffected. Here are the simplest forms of these

methods:

String toLowerCase()
String toUpperCase()

// Demonstrate toUpperCase() and toLowerCase().

class ChangeCase {
 public static void main(String[] args)
 {
 String str = "This is a test.";
 System.out.println("Original: " + str);
 String upper = str.toUpperCase();
 String lower = str.toLowerCase();
 System.out.println("Uppercase: " + upper);
 System.out.println("Lowercase: " + lower);
 }
}
O/P:
Original: This is a test.
Uppercase: THIS IS A TEST.
Lowercase: this is a test.

String represents fixed-length, immutable character sequences.

In contrast, StringBuffer represents growable and writable character sequences. StringBuffer may

have characters and substrings inserted in the middle or appended to the end.

StringBuilder is identical to StringBuffer except for one important difference: it is not

synchronized, which means that it is not thread-safe. The advantage of StringBuilder is faster

performance.

UNIT-I 44 KNREDDY

JAVA PROGRAMMING

