
UNIT II
Classes: Classes, Objects, Methods, Parameters, Constructors, Garbage Collection, Access
modifiers, Pass Objects and arguments, Method and Constructor Overloading,
Understanding static, Nested and inner classes.
Inheritance – Basics, Member Access, Usage of Super, Multi level hierarchy, Method
overriding, Abstract class, Final keyword.
Interfaces –Creating, Implementing, Using, Extending, and Nesting of interfaces.
Packages – Defining, Finding, Member Access, Importing.

CLASSES AND OBJECTS:
 A class is a template for an object, and an object is an instance of a class.
The General Form of a Class
 When a class is defined, its exact form and nature is declared by specifying the data that it

contains and the code that operates on that data.
 A class is declared by use of the class keyword.

class class-name{
// declare instance variables
type var1;
type var2;
//…….
type varN;
// declare methods
type method1(parameters){
//body of method
}
type method2(parameters){
//body of method
}
//…..
type methodN(parameters){
//body of method
}

}
 The data, or variables, defined within a class are called instance variables. The code is

contained within methods. Collectively, the methods and variables defined within a class are
called members of the class.

 Each instance of the class (that is, each object of the class) contains its own copy of these
variables
Defining a class:
class Vehicle {
 int passengers; // number of passengers
 int fuelCap; // fuel capacity in gallons
 int mpg; // fuel consumption in miles per gallon
}
class declaration is only a type description: it does not create an actual object
To actually create a Vehicle object, use a statement like the following
Vehicle minivan = new Vehicle(); // create a vehicle object called minivan
After this statement executes, minivan will be an instance of Vehicle. Thus, it will have
“physical” reality.

 Thus, every Vehicle object will contain its own copies of the instance variables passengers,
fuelCap, mpg. To access these variables, you will use the dot (.) operator. The dot operator
links the name of the object with the name of an instance variable.
object.member;
minivan.fuelcap=16;

UNIT-II 1 KNREDDY

JAVA PROGRAMMING

/* A program that uses the Vehicle class.
 Call this file VehicleDemo.java
*/
class Vehicle {
 int passengers; // number of passengers
 int fuelCap; // fuel capacity in gallons
 int mpg; // fuel consumption in miles per gallon
}

// This class declares an object of type Vehicle.
class VehicleDemo {
 public static void main(String[] args) {
 Vehicle minivan = new Vehicle();
 int range;
 // assign values to fields in minivan
 minivan.passengers = 7;
 minivan.fuelCap = 16;
 minivan.mpg = 21;
 // compute the range assuming a full tank of gas
 range = minivan.fuelCap * minivan.mpg;
 System.out.println("Minivan can carry " + minivan.passengers +
 “with a range of " + range);
 }
}

 When this program is compiled, two .class files have been created. The Java compiler
automatically puts each class into its own .class file.

 To run this program we must run VehicleDemo.class.

 // This program creates two Vehicle objects.

class Vehicle {
 int passengers; // number of passengers
 int fuelCap; // fuel capacity in gallons
 int mpg; // fuel consumption in miles per gallon
}

// This class declares an object of type Vehicle.
class TwoVehicles {
 public static void main(String[] args) {
 Vehicle minivan = new Vehicle();
 Vehicle sportscar = new Vehicle();
 int range1, range2;

 // assign values to fields in minivan
 minivan.passengers = 7;
 minivan.fuelCap = 16;
 minivan.mpg = 21;

 // assign values to fields in sportscar
 sportscar.passengers = 2;
 sportscar.fuelCap = 14;
 sportscar.mpg = 12;

 // compute the ranges assuming a full tank of gas
 range1 = minivan.fuelCap * minivan.mpg;
 range2 = sportscar.fuelCap * sportscar.mpg;
 System.out.println("Minivan can carry " + minivan.passengers + " with a range of " + range1);
 System.out.println("Sportscar can carry " + sportscar.passengers +" with a range of " + range2);
 }
}

UNIT-II 2 KNREDDY

JAVA PROGRAMMING

DECLARING OBJECTS
 Obtaining objects of a class is a two-step process.
 First, you must declare a variable of the class type. This variable does not define an object.

Instead, it is simply a variable that can refer to an object.
 Second, you must acquire an actual, physical copy of the object and assign it to that variable.

This can be done by using the new operator.
 The new operator dynamically allocates (that is, allocates at run time) memory for an object

and returns a reference to it.
 This reference is, more or less, the address in memory of the object allocated by new.

Vehicle minivan; // declare reference to object

 minivan
minivan = new Vehicle(); // allocate a Vehicle object

 minivan
 Vehicle object

REFERENCE VARIABLES AND ASSIGNMENTS
 Object reference variables act differently when an assignment takes place.
 Consider the following fragment:

Vehicle car1= new Vehicle();
Vehicle car2= car1;

 car1

 car2
After this fragment executes, car1 and car2 will both refer to the same object. The
assignment of car1 to car2 did not allocate any memory or copy any part of the original
object. It simply makes car2 refer to the same object as does car1. Thus, any changes made
to the object through car2 will affect the object to which car1 is referring, since they are the
same object.
car1.mpg=26;

 When the following statements are executed display the same value 26
System.out.println(car1.mpg);
System.out.println(car2.mpg);

 Although car1 and car2 both refer to the same object, they are not linked in any other way.
Vehicle car1= new Vehicle();
Vehicle car2= car1;
Vehicle car3= new Vehicle();
car2=car3;

 After this statement executes car2 refers to the same object as car3. The object referred to by
car1 is exchanged.

When you assign one object reference variable to another object reference variable, you are not
creating a copy of the object, you are only making a copy of the reference.

passengers
fuelcap
mpg

passengers
fuelcap
mpg

NULL

UNIT-II 3 KNREDDY

JAVA PROGRAMMING

Methods
 A method contains the statements that define its actions.

 This is the general form of a method:
type name(parameter-list) {

// body of method
}

 Here, type specifies the type of data returned by the method. This can be any valid type,
including class types that you create. If the method does not return a value, its return type
must be void.

 The parameter-list is a sequence of type and identifier pairs separated by commas. Parameters
are essentially variables that receive the value of the arguments passed to the method when it
is called. If the method has no parameters, then the parameter list will be empty.

Adding a Method to the Vehicle Class
 Most of the time, methods are used to access the instance variables defined by the class. In

fact, methods define the interface to most classes. This allows the class implementer to hide
the specific layout of internal data structures behind cleaner method abstractions.

// Add range to Vehicle.
class Vehicle {
 int passengers; // number of passengers
 int fuelCap; // fuel capacity in gallons
 int mpg; // fuel consumption in miles per gallon
 // Display the range.
 void range() {
 System.out.println("Range is " + fuelCap * mpg);
 }
}

class AddMeth {
 public static void main(String[] args) {
 Vehicle minivan = new Vehicle();
 Vehicle sportscar = new Vehicle();
 int range1, range2;

 // assign values to fields in minivan
 minivan.passengers = 7;
 minivan.fuelCap = 16;
 minivan.mpg = 21;

 // assign values to fields in sportscar
 sportscar.passengers = 2;
 sportscar.fuelCap = 14;
 sportscar.mpg = 12;
 System.out.print("Minivan can carry " + minivan.passengers + ". ");
 minivan.range(); // display range of minivan
 System.out.print("Sportscar can carry " + sportscar.passengers + ". ");
 sportscar.range(); // display range of sportscar.
 }
}

 When a method is called, program control is transferred to the method. When the method
terminates, control is transferred back to the caller, and execution resumes with the line of
code following the call.

 When a method uses an instance variable that is defined by its class, it does so directly,
without explicit reference to an object and without use of the dot operator.

Returning from a method:
In general, two conditions can cause a method to return- first, when the method’s closing
brace is encountered. The second is when a return statement is executed. There are two forms
of return – one for use in void methods and one for returning values.

UNIT-II 4 KNREDDY

JAVA PROGRAMMING

Returning a value:
 Methods that have a return type other than void return a value to the calling routine using

the following form of the return statement:
return value;

Here, value is the value returned.
// Use a return value.
class Vehicle {
 int passengers; // number of passengers
 int fuelCap; // fuel capacity in gallons
 int mpg; // fuel consumption in miles per gallon
 // Return the range.
 int range() {
 return mpg * fuelCap;
 }
}
class RetMeth {
 public static void main(String[] args) {
 Vehicle minivan = new Vehicle();
 Vehicle sportscar = new Vehicle();
 int range1, range2;
 // assign values to fields in minivan
 minivan.passengers = 7;
 minivan.fuelCap = 16;
 minivan.mpg = 21;
 // assign values to fields in sportscar
 sportscar.passengers = 2;
 sportscar.fuelCap = 14;
 sportscar.mpg = 12;
 // get the ranges
 range1 = minivan.range();
 range2 = sportscar.range();
 System.out.println("Minivan can carry " + minivan.passengers +“with range of " + range1 + " miles");
 System.out.println("Sportscar can carry " + sportscar.passengers + “with range of "+range2 + " miles");
 }
}

Using parameters:
 It is possible to pass one or more values to a method when the method is called.
 Parameters allow a method to be generalized. That is, a parameterized method can operate on

a variety of data and/or be used in a number of slightly different situations.
 There are two important things to understand about returning values:

• The type of data returned by a method must be compatible with the return type specified by
the method. For example, if the return type of some method is boolean, you could not return
an integer.
• The variable receiving the value returned by a method must also be compatible with the
return type specified for the method.

 // A simple example that uses a parameter.
class ChkNum {
 // Return true if x is even.
 boolean isEven(int x) {
 if((x%2) == 0) return true;
 else return false;
 }
}
class ParmDemo {
 public static void main(String[] args) {
 ChkNum e = new ChkNum();
 if(e.isEven(10)) System.out.println("10 is even.");
 if(e.isEven(9)) System.out.println("9 is even.");
 if(e.isEven(8)) System.out.println("8 is even.");
 }

}

UNIT-II 5 KNREDDY

JAVA PROGRAMMING

A method can have more than one parameter. Simply declare each parameter, separating one
from the next with a comma.
class Factor {
 // Return true if a is a factor of b.
 boolean isFactor(int a, int b) {
 if((b % a) == 0) return true;
 else return false;
 }
}
class IsFact {
 public static void main(String[] args) {
 Factor x = new Factor();
 if(x.isFactor(2, 20)) System.out.println("2 is factor");
 if(x.isFactor(3, 20)) System.out.println("this won't be displayed");
 }
}

Adding a parameterized method to Vehicle:
/*
 Add a parameterized method that computes the fuel required for a given distance.
*/
class Vehicle {
 int passengers; // number of passengers
 int fuelCap; // fuel capacity in gallons
 int mpg; // fuel consumption in miles per gallon
 // Return the range.
 int range() {
 return mpg * fuelCap;
 }
 // Compute fuel needed for a given distance.
 double fuelNeeded(int miles) {
 return (double) miles / mpg;
 }
}
class CompFuel {
 public static void main(String[] args) {
 Vehicle minivan = new Vehicle();
 Vehicle sportscar = new Vehicle();
 double gallons;
 int dist = 252;
 // assign values to fields in minivan
 minivan.passengers = 7;
 minivan.fuelCap = 16;
 minivan.mpg = 21;
 // assign values to fields in sportscar
 sportscar.passengers = 2;
 sportscar.fuelCap = 14;
 sportscar.mpg = 12;
 gallons = minivan.fuelNeeded(dist);
 System.out.println("To go " + dist + " miles minivan needs " + gallons + " gallons of fuel.");
 gallons = sportscar.fuelNeeded(dist);
 System.out.println("To go " + dist + " miles sportscar needs " + gallons + " gallons of fuel.");
 }
}

UNIT-II 6 KNREDDY

JAVA PROGRAMMING

CONSTRUCTORS:
 Java allows objects to initialize themselves when they are created. This automatic

initialization is performed through the use of a constructor.
 A constructor initializes an object immediately upon creation. It has the same name as the

class in which it resides and is syntactically similar to a method. Once defined, the
constructor is automatically called immediately after the object is created, before the new
operator completes.

// A simple constructor.
class MyClass {
 int x;
 MyClass() {
 x = 10;
 }
}
class ConsDemo {
 public static void main(String[] args) {
 MyClass t1 = new MyClass();
 MyClass t2 = new MyClass();
 System.out.println(t1.x + " " + t2.x);
 }
}

Parameterized Constructors
 Parameters are added to a constructor in the same way that they are added to a method: just

declare them inside the parenthesis after the constructor’s name.
// A parameterized constructor.
class MyClass {
 int x;
 MyClass(int i) {
 x = i;
 }
}
class ParmConsDemo {
 public static void main(String[] args) {
 MyClass t1 = new MyClass(10);
 MyClass t2 = new MyClass(88);
 System.out.println(t1.x + " " + t2.x);
 }
}

Adding a Constructor to a Vehicle calss
// Add a constructor.
class Vehicle {
 int passengers; // number of passengers
 int fuelCap; // fuel capacity in gallons
 int mpg; // fuel consumption in miles per gallon
 // This is a constructor for Vehicle.
 Vehicle(int p, int f, int m) {
 passengers = p;
 fuelCap = f;
 mpg = m;
 }
 // Return the range.
 int range() {
 return mpg * fuelCap;
 }
 // Compute fuel needed for a given distance.
 double fuelNeeded(int miles) {
 return (double) miles / mpg;
 }
}

UNIT-II 7 KNREDDY

JAVA PROGRAMMING

class VehConsDemo {
 public static void main(String[] args) {
 // construct complete vehicles
 Vehicle minivan = new Vehicle(7, 16, 21);
 Vehicle sportscar = new Vehicle(2, 14, 12);
 double gallons;
 int dist = 252;
 gallons = minivan.fuelNeeded(dist);
 System.out.println("To go " + dist + " miles minivan needs " +
 gallons + " gallons of fuel.");
 gallons = sportscar.fuelNeeded(dist);
 System.out.println("To go " + dist + " miles sportscar needs " +
 gallons + " gallons of fuel.");
 }
}

The this Keyword
 Sometimes a method will need to refer to the object that invoked it. To allow this, Java defines

the this keyword.
 this can be used inside any method to refer to the current object. That is, this is always a

reference to the object on which the method was invoked.
 class MyClass {
 int x;
 MyClass(int i) {
 this.x = i;
 }
 }
 class ConsDemo {
 public static void main(String[] args) {
 MyClass t1 = new MyClass(10);
 MyClass t2 = new MyClass(88);
 System.out.println(t1.x + " " + t2.x);
 }
 }

Output of the above code is
10 88

 this has some important uses. For example java syntax permits the name of a parameter or a
local variable to be the same of an instance variable. When this happens, the local name hides
the instance variable. The hidden instance variable can gain access by referring to it through
this.

class MyClass {
 int x;

MyClass(int x) {
x = x;

 }
 }
class ConsDemo {

public static void main(String[] args) {
 MyClass t1 = new MyClass(10);
 MyClass t2 = new MyClass(88);
 System.out.println(t1.x + " " + t2.x);

}
}

Output is
0 0

UNIT-II 8 KNREDDY

JAVA PROGRAMMING

If we use this key word we can gain access to the hidden instance variables
class MyClass {
 int x;

MyClass(int x) {
this.x = x;

 }
 }

class ConsDemo {

public static void main(String[] args) {
 MyClass t1 = new MyClass(10);
 MyClass t2 = new MyClass(88);
 System.out.println(t1.x + " " + t2.x);

}
}

O/P is 10 88

new OPERATOR REVISITED
 When you allocate an object, you use the following general form:

class-var = new classname ();
 Now you can understand why the parentheses are needed after the class name. What is

actually happening is that the constructor for the class is being called.
 When you do not explicitly define a constructor for a class, then Java creates a default

constructor for the class.
 The default constructor automatically initializes all instance variables to zero. The default

constructor is often sufficient for simple classes, but it usually won’t do for more
sophisticated ones.

 Once you define your own constructor, the default constructor is no longer used.

Garbage Collection
 Since objects are dynamically allocated by using the new operator, you might be wondering

how such objects are destroyed and their memory released for later reallocation. In some
languages, such as C++, dynamically allocated objects must be manually released by use of a
delete operator.

 Java takes a different approach; it handles deallocation automatically. The technique that
accomplishes this is called garbage collection.

 When no references to an object exist, that object is assumed to be no longer needed, and the
memory occupied by the object can be reclaimed.

 Garbage collection only occurs sporadically (if at all) during the execution of your program. It
will not occur simply because one or more objects exist that are no longer used.
The finalize() Method

 Sometimes an object will need to perform some action when it is destroyed.
 To handle such situations, Java provides a mechanism called finalization. By using

finalization, you can define specific actions that will occur when an object is just about to be
reclaimed by the garbage collector.

 To add a finalizer to a class, you simply define the finalize() method. The Java run time calls
that method whenever it is about to recycle an object of that class. Inside the finalize()
method, you will specify those actions that must be performed before an object is destroyed.

 The finalize() method has this general form:
protected void finalize()
{
// finalization code here
}

 Here, the keyword protected is a specifier that prevents access to finalize() by code defined
outside its class.

UNIT-II 9 KNREDDY

JAVA PROGRAMMING

Access Modifiers:
 Encapsulation links data with the code that manipulates it. However, encapsulation provides

another important attribute: access control
 How a member can be accessed is determined by the access modifier attached to its

declaration. Java supplies a rich set of access modifiers.
 Java’s access modifiers are public, private, and protected. Java also defines a default access

level. protected applies only when inheritance is involved.
 When a member of a class is modified by public, then that member can be accessed by any

other code. When a member of a class is specified as private, then that member can only be
accessed by other members of its class.

 When no access modifier is used, then by default the member of a class is public within its
own package, but cannot be accessed outside of its package.

 An access modifier precedes the rest of a member’s type specification. That is, it must begin a
member’s declaration statement. Here is an example:

public int i;
private double j;
private int myMethod(int a, char b) { //…

 To understand the effects of public and private access, consider the following program:
/* This program demonstrates the difference between public and private. */
class Test {

int a; // default access
public int b; // public access
private int c; // private access
// methods to access c
void setc(int i) { // set c's value

c = i;
}
int getc() { // get c's value

return c;
}

}
class AccessTest {

public static void main(String args[]) {
Test ob = new Test();
// These are OK, a and b may be accessed directly
ob.a = 10;
ob.b = 20;
// This is not OK and will cause an error
// ob.c = 100; // Error!
// You must access c through its methods
ob.setc(100); // OK
System.out.println("a, b, and c: " + ob.a + " " +ob.b + " " + ob.getc());

}
}

UNIT-II 10 KNREDDY

JAVA PROGRAMMING

Pass objects to methods:
 It is possible to pass objects to a methods

// Objects can be passed to methods.
class Block {
 int a, b, c;
 int volume;
 Block(int i, int j, int k) {
 a = i;
 b = j;
 c = k;
 volume = a * b * c;
 }
 // Return true if ob defines same block.
 boolean sameBlock(Block ob) {
 if((ob.a == a) & (ob.b == b) & (ob.c == c)) return true;
 else return false;
 }
 // Return true if ob has same volume.
 boolean sameVolume(Block ob) {
 if(ob.volume == volume) return true;
 else return false;
 }
}
class PassOb {
 public static void main(String[] args) {
 Block ob1 = new Block(10, 2, 5);
 Block ob2 = new Block(10, 2, 5);
 Block ob3 = new Block(4, 5, 5);
 System.out.println("ob1 same dimensions as ob2: " + ob1.sameBlock(ob2));
 System.out.println("ob1 same dimensions as ob3: " + ob1.sameBlock(ob3));
 System.out.println("ob1 same volume as ob3: " + ob1.sameVolume(ob3));
 }
}

UNIT-II 11 KNREDDY

JAVA PROGRAMMING

How Arguments are passed:
 There are two ways to pass an argument to a subroutine.
 The first way is call-by-value. This approach copies the value of an argument into the formal

parameter of the subroutine. Therefore, changes made to the parameter of the subroutine
have no effect on the argument.

 The second way an argument can be passed is call-by-reference. In this approach, a reference
to an argument (not the value of the argument) is passed to the parameter. Inside the
subroutine, this reference is used to access the actual argument specified in the call. This
means that changes made to the parameter will affect the argument used to call the
subroutine.

 When you pass a primitive type to a method, it is passed by value.
// Primitive types are passed by value.
class Test {
 /* This method causes no change to the arguments
 used in the call. */
 void noChange(int i, int j) {
 i = i + j;
 j = -j;
 }
}
class CallByValue {
 public static void main(String[] args) {
 Test ob = new Test();
 int a = 15, b = 20;
 System.out.println("a and b before call: " + a + " " + b);
 ob.noChange(a, b);
 System.out.println("a and b after call: " + a + " " + b);
 }
}

 When you pass an object to a method, objects are passed by call-by-reference.

// Objects are passed through their references.
class Test {
 int a, b;
 Test(int i, int j) {
 a = i;
 b = j;
 }
 /* Pass an object. Now, ob.a and ob.b in object
 used in the call will be changed. */
 void change(Test ob) {
 ob.a = ob.a + ob.b;
 ob.b = -ob.b;
 }
}
class PassObjRef {
 public static void main(String[] args) {
 Test ob = new Test(15, 20);
 System.out.println("ob.a and ob.b before call: " + ob.a + " " + ob.b);
 ob.change(ob);
 System.out.println("ob.a and ob.b after call: " + ob.a + " " + ob.b);
 }
}

UNIT-II 12 KNREDDY

JAVA PROGRAMMING

Returning objects:
 A method can return any type of data, including class types that you create.
// Return a String object.
class ErrorMsg {
 String[] msgs = { "Output Error", "Input Error", "Disk Full", "Index Out-Of-Bounds"};
 // Return the error message.
 String getErrorMsg(int i) {
 if(i >=0 & i < msgs.length)
 return msgs[i];
 else
 return "Invalid Error Code";
 }
}
class ErrMsgDemo {
 public static void main(String[] args) {
 ErrorMsg err = new ErrorMsg();
 System.out.println(err.getErrorMsg(2));
 System.out.println(err.getErrorMsg(19));
 }
}
O/P:
Disk Full
Invalid Error Code

 We can also return objects of classes that we create.

// Return a programmer-defined object.
class Err {
 String msg; // error message
 int severity; // code indicating severity of error
 Err(String m, int s) {
 msg = m;
 severity = s;
 }
}
class ErrorInfo {
 String[] msgs = {
 "Output Error",
 "Input Error",
 "Disk Full",
 "Index Out-Of-Bounds"
 };
 int[] howbad = { 3, 3, 2, 4 };
 Err getErrorInfo(int i) {
 if(i >= 0 & i < msgs.length)
 return new Err(msgs[i], howbad[i]);
 else
 return new Err("Invalid Error Code", 0);
 }
}
class ErrInfoDemo {
 public static void main(String[] args) {
 ErrorInfo err = new ErrorInfo();
 Err e;
 e = err.getErrorInfo(2);
 System.out.println(e.msg + " severity: " + e.severity);
 e = err.getErrorInfo(19);
 System.out.println(e.msg + " severity: " + e.severity);
 }
}

UNIT-II 13 KNREDDY

JAVA PROGRAMMING

METHOD OVERLOADING:
 In Java it is possible to define two or more methods within the same class that share the

same name, as long as their parameter declarations are different. When this is the case, the
methods are said to be overloaded, and the process is referred to as method overloading.

 Method overloading is one of the ways that Java supports polymorphism.
 Overloaded methods must differ in the type and/or number of their parameters.
 While overloaded methods may have different return types, the return type alone is

insufficient to distinguish two versions of a method.
 When Java encounters a call to an overloaded method, it simply executes the version of the

method whose parameters match the arguments used in the call.
// Demonstrate method overloading.
class Overload {
 void ovlDemo() {
 System.out.println("No parameters");
 }
 // Overload ovlDemo for one integer parameter.
 void ovlDemo(int a) {
 System.out.println("One parameter: " + a);
 }
 // Overload ovlDemo for two integer parameters.
 int ovlDemo(int a, int b) {
 System.out.println("Two parameters: " + a + " " + b);
 return a + b;
 }
 // Overload ovlDemo for two double parameters.
 double ovlDemo(double a, double b) {
 System.out.println("Two double parameters: " + a + " " + b);
 return a + b;
 }
}
class OverloadDemo {
 public static void main(String[] args) {
 Overload ob = new Overload();
 int resI;
 double resD;
 // call all versions of ovlDemo()
 ob.ovlDemo();
 System.out.println();
 ob.ovlDemo(2);
 System.out.println();
 resI = ob.ovlDemo(4, 6);
 System.out.println("Result of ob.ovlDemo(4, 6): " +resI);
 System.out.println();
 resD = ob.ovlDemo(1.1, 2.32);
 System.out.println("Result of ob.ovlDemo(1.1, 2.32): " +
 resD);
 }
}
O/P:
No parameters
One parameter: 2
Two parameters: 4 6
Result of ob.ovlDemo(4, 6): 10
Two double parameters: 1.1 2.32
Result of ob.ovlDemo(1.1, 2.32): 3.42

UNIT-II 14 KNREDDY

JAVA PROGRAMMING

 The difference in their return types is insufficient for the purpose of overloading.
// one ovlDemo(int a) is ok
void ovlDemo(int a) {
 System.out.println("One parameter: " + a);
 }
 // Error. two ovlDemo(int a) are not ok even though their return types are different
 int ovlDemo(int a) {
 System.out.println("One parameter: " + a);
 return a *a;
 }

 Java provides certain automatic type conversions. These conversions also apply to parameters
of overloaded methods. For example consider the following:

/* Automatic type conversions can affect overloaded method resolution. */
class Overload2 {
 void f(int x) {
 System.out.println("Inside f(int): " + x);
 }

 void f(double x) {
 System.out.println("Inside f(double): " + x);
 }
}

class TypeConv {
 public static void main(String[] args) {
 Overload2 ob = new Overload2();
 int i = 10;
 double d = 10.1;

 byte b = 99;
 short s = 10;
 float f = 11.5F;

 ob.f(i); // calls ob.f(int)
 ob.f(d); // calls ob.f(double)

 ob.f(b); // calls ob.f(int) - type conversion
 ob.f(s); // calls ob.f(int) - type conversion
 ob.f(f); // calls ob.f(double) - type conversion
 }
}

O/P
Inside f(int) : 10
Inside f(double) : 10.1
Inside f(int) : 99
Inside f(int) : 10
Inside f(double) : 11.5

In the case of byte and short java automatically converts them to int. In the case of float the value
is converted to double and f(double) is called.

The automatic type conversions apply only if there is no direct match between a parameter and
an argument.

UNIT-II 15 KNREDDY

JAVA PROGRAMMING

OVERLOADING CONSTRUCTORS:
 Like methods constructors can also be overloaded. This allows to construct objects in a

variety of ways.
// Demonstrate an overloaded constructor.
class MyClass{
 int x;
 MyClass() {
 System.out.println("Inside MyClass().");
 x = 0;
 }
 MyClass(int i) {
 System.out.println("Inside MyClass(int).");
 x = i;
 }
 MyClass(double d) {
 System.out.println("Inside MyClass(double).");
 x = (int) d;
 }
 MyClass(int i, int j) {
 System.out.println("Inside MyClass(int, int).");
 x = i * j;
 }
}
class OverloadConsDemo {
 public static void main(String[] args) {
 MyClass t1 = new MyClass();
 MyClass t2 = new MyClass(88);
 MyClass t3 = new MyClass(17.23);
 MyClass t4 = new MyClass(2, 4);
 System.out.println("t1.x: " + t1.x);
 System.out.println("t2.x: " + t2.x);
 System.out.println("t3.x: " + t3.x);
 System.out.println("t4.x: " + t4.x);
 }
}

O/P:
Inside MyClass().
Inside MyClass(int).
Inside MyClass(double).
Inside MyClass(int, int).
t1.x: 0
t2.x: 88
t3.x: 17
t4.x: 8

// Initialize one object with another.
class Summation {
 int sum;
 // Construct from an int.
 Summation(int num) {
 sum = 0;
 for(int i=1; i <= num; i++)
 sum += i;
 }
 // Construct from another object.
 Summation(Summation ob) {
 sum = ob.sum;
 }
}
class SumDemo {
 public static void main(String[] args) {
 Summation s1 = new Summation(5);
 Summation s2 = new Summation(s1);
 System.out.println("s1.sum: " + s1.sum);
 System.out.println("s2.sum: " + s2.sum);
 }
}
O/P:
s1.sum: 15
s2.sum: 15

UNIT-II 16 KNREDDY

JAVA PROGRAMMING

UNDERSTANDING static:
 Normally, a class member must be accessed only in conjunction with an object of its class.

However, it is possible to create a member that can be used by itself, without reference to a
specific instance.

 To create such a member, precede its declaration with the keyword static.
 When a member is declared static, it can be accessed before any objects of its class are

created, and without reference to any object.
 You can declare both methods and variables to be static. The most common example of a

static member is main(). main() is declared as static because it must be called before any
objects exist.

static variables:

 Instance variables declared as static are, essentially, global variables. When objects of its
class are declared, no copy of a static variable is made. Instead, all instances of the class
share the same static variable.

// Use a static variable.
class StaticDemo {
 int x; // a normal instance variable
 static int y; // a static variable
 // Return the sum of the instance variable x and the static variable y.
 int sum() {
 return x + y;
 }
}
class SDemo {
 public static void main(String[] args) {
 StaticDemo ob1 = new StaticDemo();
 StaticDemo ob2 = new StaticDemo();
 // Each object has its own copy of an instance variable.
 ob1.x = 10;
 ob2.x = 20;
 System.out.println("ob1.x: " + ob1.x + "\nob2.x: " + ob2.x);
 System.out.println();
 StaticDemo.y = 19;
 System.out.println("ob1.sum(): " + ob1.sum());
 System.out.println("ob2.sum(): " + ob2.sum());
 System.out.println();
 StaticDemo.y = 100;
 System.out.println("ob1.sum(): " + ob1.sum());
 System.out.println("ob2.sum(): " + ob2.sum());
 System.out.println();
 }
}

O/P:
ob1.x: 10
ob2.x: 20

ob1.sum(): 29
ob2.sum(): 39

ob1.sum(): 110
ob2.sum(): 120

UNIT-II 17 KNREDDY

JAVA PROGRAMMING

static Methods:
 Methods declared static are, essentially, global methods. They are called independently of any

object. Instead a static method is called through its class name.
 Methods declared as static have several restrictions:

• They can only directly call other static methods.
• They can only directly access static data.
• They cannot refer to this or super in any way.

// Use a static method.
class StaticMeth {
 static int val = 1024; // a static variable
 // A static method.
 static int valDiv2() {
 return val/2;
 }
}
class SDemo2 {
 public static void main(String[] args) {
 System.out.println("val is " + StaticMeth.val);
 System.out.println("StaticMeth.valDiv2(): " +StaticMeth.valDiv2());
 StaticMeth.val = 4;
 System.out.println("val is " + StaticMeth.val);
 System.out.println("StaticMeth.valDiv2(): " + StaticMeth.valDiv2());
 }
}
O/P:
val is 1024
StaticMeth.valDiv2(): 512
val is 4
StaticMeth.valDiv2(): 2

static Blocks:

 A static block is executed when the class is first loaded. Thus, it is executed before the class
can be used for any other purpose.

// Use a static block
class StaticBlock {
 static double rootOf2;
 static double rootOf3;
static {
 System.out.println("Inside static block.");
 rootOf2 = Math.sqrt(2.0);
 rootOf3 = Math.sqrt(3.0);
 }
 StaticBlock(String msg) {
 System.out.println(msg);
 }
}
class SDemo3 {
 public static void main(String[] args) {
 StaticBlock ob = new StaticBlock("Inside Constructor");
 System.out.println("Square root of 2 is " +StaticBlock.rootOf2);
 System.out.println("Square root of 3 is " +StaticBlock.rootOf3);
 }
}

O/P:
Inside static block.
Inside Constructor
Square root of 2 is 1.4142135623730951
Square root of 3 is 1.7320508075688772

UNIT-II 18 KNREDDY

JAVA PROGRAMMING

NESTED AND INNER CLASSES:
 It is possible to define a class within another class; such classes are known as nested classes.

The scope of a nested class is bounded by the scope of its enclosing class. Thus, if class B is
defined within class A, then B does not exist independently of A.

 A nested class has access to the members, including private members, of the class in which it
is nested. However, the enclosing class does not have access to the members of the nested
class.

 A nested class that is declared directly within its enclosing class scope is a member of its
enclosing class. It is also possible to declare a nested class that is local to a block.

 There are two types of nested classes: static and non-static.
 A static nested class is one that has the static modifier applied. Because it is static, it must

access the non-static members of its enclosing class through an object. That is, it cannot refer
to non-static members of its enclosing class directly.

 The most important type of nested class is the inner class. An inner class is a non-static
nested class.
// Use an inner class.
class Outer {
 int[] nums;
 Outer(int[] n) {
 nums = n;
 }
 void analyze() {
 Inner inOb = new Inner();
 System.out.println("Minimum: " + inOb.min());
 System.out.println("Maximum: " + inOb.max());
 System.out.println("Average: " + inOb.avg());
 }
 // This is an inner class.
 class Inner {
 // Return the minimum value.
 int min() {
 int m = nums[0];
 for(int i=1; i < nums.length; i++)
 if(nums[i] < m) m = nums[i];
 return m;
 }
 // Return the maximum value.
 int max() {
 int m = nums[0];
 for(int i=1; i < nums.length; i++)
 if(nums[i] > m) m = nums[i];
 return m;
 }
 // Return the average.
 int avg() {
 int a = 0;
 for(int i=0; i < nums.length; i++)
 a += nums[i];
 return a / nums.length;
 }
 }
}
class NestedClassDemo {
 public static void main(String[] args) {
 int[] x = { 3, 2, 1, 5, 6, 9, 7, 8 };
 Outer outOb = new Outer(x);
 outOb.analyze();
 }
}

O/P:
Minimum: 1
Maximum: 9
Average: 5

UNIT-II 19 KNREDDY

JAVA PROGRAMMING

INHERITANCE:
 Basics:
 Java supports inheritance by allowing one class to incorporate another class into its

declaration. This is done by using extends keyword.
 In java a class that is inherited is called a superclass. The class that does the inheriting is

called a subclass.
 The general form of a class declaration that inherits a superclass is shown here:

class subclass-name extends superclass-name {
// body of class

}
 We can only specify one superclass for any subclass that we create. Java does not support the

inheritance of multiple superclasses into a single subclass.
 A major advantage of inheritance is that once we had created a superclass that defines the

atteibutes common to a set of objects, it can be used to create any number of more specific
subclasses.

 The following program creates a superclass called TwoDShape and subclass called Triangle
// A class for two-dimensional objects.
class TwoDShape {
 double width;
 double height;
 void showDim() {
 System.out.println("Width and height are " + width + " and " + height);
 }
}
// A subclass of TwoDShape for triangles.
class Triangle extends TwoDShape {
 String style;
 double area() {
 return width * height / 2;
 }
 void showStyle() {
 System.out.println("Triangle is " + style);
 }
}
class Shapes {
 public static void main(String[] args) {
 Triangle t1 = new Triangle();
 Triangle t2 = new Triangle();
 t1.width = 4.0;
 t1.height = 4.0;
 t1.style = "filled";
 t2.width = 8.0;
 t2.height = 12.0;
 t2.style = "outlined";
 System.out.println("Info for t1: ");
 t1.showStyle();
 t1.showDim();
 System.out.println("Area is " + t1.area());
 System.out.println();
 System.out.println("Info for t2: ");
 t2.showStyle();
 t2.showDim();
 System.out.println("Area is " + t2.area());
 }
}

O/P:
Info for t1:
Triangle is filled
Width and height are 4.0 and 4.0
Area is 8.0

Info for t2:
Triangle is outlined
Width and height are 8.0 and 12.0
Area is 48.0

UNIT-II 20 KNREDDY

JAVA PROGRAMMING

MEMBER ACCESS AND INHERITANCE:
 Inheriting a class does not overrule the private access restriction. Thus even though a

subclass includes all of the members of its superclass, it cannot access those members of the
superclass that have been declared as private.

// Private members of a superclass are not accessible by a subclass.
// This example will not compile.
// A class for two-dimensional objects.
class TwoDShape {
 private double width; // these are
 private double height; // now private
 void showDim() {
 System.out.println("Width and height are " + width + " and " + height);
 }
}
// A subclass of TwoDShape for triangles.
class Triangle extends TwoDShape {
 String style;
 double area() {
 return width * height / 2; // Error! can't access
 }
 void showStyle() {
 System.out.println("Triangle is " + style);
 }
}

 The Triangle class will not compile because the reference to width and height inside the area()
method causes an access violation. Since width and height are declared private in
TwoDShape, they are accessible only by the other members of TwoDShape.

 To access private members of superclass we can use accessor methods.

USAGE OF super:
 Both the superclass and subclass have their own constructors.
 Constructors for the superclass construct the superclass portion of the object, and the

constructor for the subclass constructs the subclass part.
 When both the superclass and the subclass define constructors, the process is a bit

complicated because both the superclass and subclass constructors must be executed. In this
case we need to use super keyword.

 super has two general forms. The first calls the superclass constructor. The second is used to
access a member of the superclass that has been hidden by a member of a subclass.

Using super to Call Superclass Constructors

 A subclass can call a constructor defined by its superclass by use of the following form of
super:

super(arg-list);

 super() must always be the first statement executed inside a subclass constructor.

 // Add constructors to TwoDShape.

class TwoDShape {
 private double width;
 private double height;
 // Parameterized constructor.
 TwoDShape(double w, double h) {
 width = w; height = h;
 }
 // Accessor methods for width and height.
 double getWidth() { return width; }
 double getHeight() { return height; }
 void setWidth(double w) { width = w; }
 void setHeight(double h) { height = h; }

UNIT-II 21 KNREDDY

JAVA PROGRAMMING

 void showDim() {
 System.out.println("Width and height are " + width + " and " + height);
 }
}
// A subclass of TwoDShape for triangles.
class Triangle extends TwoDShape {
 private String style;
 Triangle(String s, double w, double h) {
 super(w, h); // call superclass constructor
 style = s;
 }
 double area() {
 return getWidth() * getHeight() / 2;
 }
 void showStyle() {
 System.out.println("Triangle is " + style);
 }
}
class Shapes4 {
 public static void main(String[] args) {
 Triangle t1 = new Triangle("filled", 4.0, 4.0);
 Triangle t2 = new Triangle("outlined", 8.0, 12.0);
 System.out.println("Info for t1: ");
 t1.showStyle();
 t1.showDim();
 System.out.println("Area is " + t1.area());
 System.out.println();
 System.out.println("Info for t2: ");
 t2.showStyle();
 t2.showDim();
 System.out.println("Area is " + t2.area());
 }
}

Using super to Access Superclass Members:
 The second form of super acts somewhat like this, except that it always refers to the

superclass of the subclass in which it is used. This usage has the following general form:
super. member

 Here, member can be either a method or an instance variable
// Using super to overcome name hiding.
class A {
 int i;
}
// Create a subclass by extending class A.
class B extends A {
 int i; // this i hides the i in A
 B(int a, int b) {
 super.i = a; // i in A
 i = b; // i in B
 }
 void show() {
 System.out.println("i in superclass: " + super.i);
 System.out.println("i in subclass: " + i);
 }
}
class UseSuper {
 public static void main(String[] args) {
 B subOb = new B(1, 2);
 subOb.show();
 }
}

UNIT-II 22 KNREDDY

JAVA PROGRAMMING

Creating a Multilevel Hierarchy
 We can build hierarchies that contain as many layers of inheritance. It is perfectly acceptable

to use a subclass as a superclass of another.
 For example, given three classes called A, B, and C, C can be a subclass of B, which is a

subclass of A. When this type of situation occurs, each subclass inherits all of the traits found
in all of its superclasses. In this case, C inherits all aspects of B and A.

 To see how a multilevel hierarchy can be useful, consider the following program.

// A multilevel hierarchy.
class TwoDShape {
 private double width;
 private double height;
 // A default constructor.
 TwoDShape() {
 width = height = 0.0;
 }
 // Parameterized constructor.
 TwoDShape(double w, double h) {
 width = w;
 height = h;
 }
 // Construct object with equal width and height.
 TwoDShape(double x) {
 width = height = x;
 }
 // Accessor methods for width and height.
 double getWidth() { return width; }
 double getHeight() { return height; }
 void setWidth(double w) { width = w; }
 void setHeight(double h) { height = h; }
 void showDim() {
 System.out.println("Width and height are " +
 width + " and " + height);
 }
}
// Extend TwoDShape.
class Triangle extends TwoDShape {
 private String style;
 // A default constructor.
 Triangle() {
 super();
 style = "none";
 }
 Triangle(String s, double w, double h) {
 super(w, h); // call superclass constructor
 style = s;
 }
 // One argument constructor.
 Triangle(double x) {
 super(x); // call superclass constructor
 // default style to filled
 style = "filled";
 }
 double area() {
 return getWidth() * getHeight() / 2;
 }
 void showStyle() {
 System.out.println("Triangle is " + style);
 }
}

UNIT-II 23 KNREDDY

JAVA PROGRAMMING

// Extend Triangle.
class ColorTriangle extends Triangle {
 private String color;
 ColorTriangle(String c, String s, double w, double h) {
 super(s, w, h);
 color = c;
 }
 String getColor() { return color; }
 void showColor() {
 System.out.println("Color is " + color);
 }
}
class Shapes6 {
 public static void main(String[] args) {
 ColorTriangle t1 =new ColorTriangle("Blue", "outlined", 8.0, 12.0);
 ColorTriangle t2 =new ColorTriangle("Red", "filled", 2.0, 2.0);
 System.out.println("Info for t1: ");
 t1.showStyle();
 t1.showDim();
 t1.showColor();
 System.out.println("Area is " + t1.area());
 System.out.println();
 System.out.println("Info for t2: ");
 t2.showStyle();
 t2.showDim();
 t2.showColor();
 System.out.println("Area is " + t2.area());
 }
}

When Constructors Are Called
 When a class hierarchy is created, in what order are the constructors for the classes that

make up the hierarchy called?
 In a class hierarchy, constructors are called in order of derivation, from superclass to

subclass.
 Further, since super() must be the first statement executed in a subclass’ constructor, this

order is the same whether or not super() is used. If super() is not used, then the default or
parameterless constructor of each superclass will be executed.

 The following program illustrates when constructors are executed:
// Demonstrate when constructors are executed.
class A {
 A() {
 System.out.println("Constructing A.");
 }
}
class B extends A {
 B() {
 System.out.println("Constructing B.");
 }
}
class C extends B {
 C() {
 System.out.println("Constructing C.");
 }
}
class OrderOfConstruction {
 public static void main(String[] args) {
 C c = new C();
 }
}

UNIT-II 24 KNREDDY

JAVA PROGRAMMING

Superclass references and subclass objects:

 A reference variable for one class type cannot normally refer to an object of another class type.
// This will not compile.
class X {
 int a;
 X(int i) { a = i; }
}
class Y {
 int a;
 Y(int i) { a = i; }
}
class IncompatibleRef {
 public static void main(String[] args) {
 X x = new X(10);
 X x2;
 Y y = new Y(5);
 x2 = x; // OK, both of same type
 x2 = y; // Error, not of same type
 }
}

 A reference variable of a superclass can be assigned a reference to an object of any subclass
derived from that superclass.

// A superclass reference can refer to a subclass object.
class X {
 int a;
 X(int i) { a = i; }
}
class Y extends X {
 int b;
 Y(int i, int j) {
 super(j);
 b = i;
 }
}
class SupSubRef {
 public static void main(String[] args) {
 X x = new X(10);
 X x2;
 Y y = new Y(5, 6);
 x2 = x; // OK, both of same type
 System.out.println("x2.a: " + x2.a);
 x2 = y; // still OK because y is derived from X
 System.out.println("x2.a: " + x2.a);
 // X references know only about X members
 x2.a = 19; // OK

 // x2.b = 27; // Error, X doesn't have a b member
 }
}

 When a reference to a subclass object is assigned to a superclass reference variable we can
only access to those parts of the objet defined by the superclass.

 When constructors are called in a class hierarchy, subclass references can be assigned to a
superclass variable.

UNIT-II 25 KNREDDY

JAVA PROGRAMMING

METHOD OVERRIDING:
 In a class hierarchy, when a method in a subclass has the same name and type signature as

a method in its superclass, then the method in the subclass is said to override the method in
the superclass.

 When an overridden method is called from within its subclass, it will always refer to the
version of that method defined by the subclass. The version of the method defined by the
superclass will be hidden.

 Consider the following:
class A1{
 int i, j;
 A1(int a, int b) {
 i = a;
 j = b;
 }
 // display i and j

 void show(){
 System.out.println("i and j: " + i + " " + j);
 }
}
class B1 extends A1 {
 int k;
 B1(int a, int b, int c) {
 super(a, b);
 k = c;
 }
 // display k - this overrides show() in A
 void show() {
 System.out.println("k: " + k);
 }
}
class MetOver{
 public static void main(String[] args) {
 B1 subOb = new B1(1,2,3);
 subOb.show(); // this calls show() in B
 }
}
O/P:
k: 3

 When show() is invoked on an object of type B, the version of show() defined within B is
used.

 If you wish to access the superclass version of an overridden method, you can do so by using
super.
class B extends A {
 int k;
 B(int a, int b, int c) {
 super(a, b);
 k = c;
 }
 void show() {
 super.show(); // this calls A's show()
 System.out.println("k: " + k);
 }
}
O/P:
i and j: 1 2
k: 3

UNIT-II 26 KNREDDY

JAVA PROGRAMMING

 Method overriding occurs only when the names and the type signatures of the two methods
are identical. If they are not, then the two methods are simply overloaded. For example,
consider this modified version of the preceding example:
/* Methods with differing signatures are overloaded and not overridden. */
class A {
 int i, j;
 A(int a, int b) {
 i = a;
 j = b;
 }
 // display i and j
 void show() {
 System.out.println("i and j: " + i + " " + j);
 }
}
// Create a subclass by extending class A.
class B extends A {
 int k;
 B(int a, int b, int c) {
 super(a, b);
 k = c;
 }
 // overload show()
 void show(String msg) {
 System.out.println(msg + k);
 }
}
class Overload {
 public static void main(String[] args) {
 B subOb = new B(1, 2, 3);
 subOb.show("This is k: "); // this calls show() in B
 subOb.show(); // this calls show() in A
 }
}
O/P:
this is k: 3
i and j: 1 2
DYNAMIC METHOD DISPATCH:

 Method overriding forms the basis for one of Java’s most powerful concepts: dynamic method
dispatch. Dynamic method dispatch is the mechanism by which a call to an overridden
method is resolved at run time, rather than compile time. Dynamic method dispatch is
important because this is how Java implements run-time polymorphism.

 When an overridden method is called through a superclass reference, Java determines which
version of that method to execute based upon the type of the object being referred to at the
time the call occurs. Thus, this determination is made at run time.

 When different types of objects are referred to, different versions of an overridden method will
be called. In other words, it is the type of the object being referred to (not the type of the
reference variable) that determines which version of an overridden method will be executed.
// Demonstrate dynamic method dispatch.
class Sup {
 void who() {
 System.out.println("who() in Sup");
 }
}
class Sub1 extends Sup {
 void who() {
 System.out.println("who() in Sub1");
 }
}

UNIT-II 27 KNREDDY

JAVA PROGRAMMING

class Sub2 extends Sup {
 void who() {
 System.out.println("who() in Sub2");
 }
}
class DynDispDemo {
 public static void main(String[] args) {
 Sup superOb = new Sup();
 Sub1 subOb1 = new Sub1();
 Sub2 subOb2 = new Sub2();
 Sup supRef;
 supRef = superOb;
 supRef.who();
 supRef = subOb1;
 supRef.who();
 supRef = subOb2;
 supRef.who();
 }
}
O/P:
who() in Sup
who() in Sub1
who() in Sub2

Why Overridden Methods?

 Polymorphism is essential to object-oriented programming for one reason: it allows a general
class to specify methods that will be common to all of its derivatives, while allowing
subclasses to define the specific implementation of some or all of those methods. Overridden
methods are another way that Java implements the “one interface, multiple methods” aspect
of polymorphism.

 Dynamic, run-time polymorphism is one of the most powerful mechanisms that object
oriented design brings to bear on code reuse and robustness. The ability of existing code
libraries to call methods on instances of new classes without recompiling while maintaining a
clean abstract interface is a profoundly powerful tool.

USING ABSTRACT CLASSES:
 A class which contains the abstract keyword in its declaration is known as abstract class.

 Abstract classes may or may not contain abstract methods ie., methods without body
(public void get();)

 But, if a class has at least one abstract method, then the class must be declared abstract.
 If a class is declared abstract it cannot be instantiated.
 To use an abstract class you have to inherit it from another class, provide

implementations to the abstract methods in it.
 If you inherit an abstract class you have to provide implementations to all the abstract

methods in it.

Abstract Methods:

 If you want a class to contain a particular method but you want the actual implementation of
that method to be determined by child classes, you can declare the method in the parent class
as abstract.
 abstract keyword is used to declare the method as abstract.
 You have to place the abstract keyword before the method name in the method

declaration.
 An abstract method contains a method signature, but no method body.
 Instead of curly braces an abstract method will have a semi colon (;) at the end.

UNIT-II 28 KNREDDY

JAVA PROGRAMMING

// A Simple demonstration of abstract.
abstract class A {

abstract void callme();
// concrete methods are still allowed in abstract classes
void callmetoo() {

System.out.println("This is a concrete method.");
}

}
class B extends A {

void callme() {
System.out.println("B's implementation of callme.");

}
}
class AbstractDemo {

public static void main(String args[]) {
B b = new B();
b.callme();
b.callmetoo();

}
}

Using final
 To prevent a method from being overridden or a class from being inherited by using the

keyword final.
final prevents overriding:

 To disallow a method from being overridden, specify final as a modifier at the start of its
declaration. Methods declared as final cannot be overridden. The following fragment
illustrates final:

class A {
 final void meth() {
 System.out.println("This is a final method.");
 }
}
class B extends A {
 void meth() { // ERROR! Can't override.
 System.out.println("Illegal!");
 }
}

Using final to Prevent Inheritance

 To prevent a class from being inherited, precede the class declaration with final.
 Declaring a class as final implicitly declares all of its methods as final, too.
 It is illegal to declare a class as both abstract and final since an abstract class is incomplete

by itself and relies upon its subclasses to provide complete implementations.
final class A {
 // ...
}
// The following class is illegal.
class B extends A { // ERROR! Can't subclass A
 // ...
}

 final with data members:
 final can also be applied to member variables . If a class variable’s name precede with final,

its value cannot be changed throughout the lifetime of the program.

UNIT-II 29 KNREDDY

JAVA PROGRAMMING

INTERFACES:
 Using the keyword interface, you can fully abstract a class’ interface from its implementation.
 Java Interface also represents IS-A relationship.
 Interfaces are syntactically similar to classes, but they lack instance variables, and their

methods are declared without any body.
 Once it is defined, any number of classes can implement an interface. Also, one class can

implement any number of interfaces.
 To implement an interface, a class must create the complete set of methods defined by the

interface.
 By providing the interface keyword, Java allows you to fully utilize the “one interface,

multiple methods” aspect of polymorphism.
 Interfaces are designed to support dynamic method resolution at run time.
 Defining an Interface
 An interface is defied much like a class. This is a simplified general form of an interface:

access interface name {
return-type method-name1(parameter-list);
return-type method-name2(parameter-list);
//…
return-type method-nameN(parameter-list);

}
 The java compiler adds public and abstract keywords before the interface method and public,

static and final keywords before data members.
 An interface is different from a class in several ways, including:

 You cannot instantiate an interface.
 An interface does not contain any constructors.
 All of the methods in an interface are abstract.
 An interface cannot contain instance fields. The only fields that can appear in an interface

must be declared both static and final.
 An interface is not extended by a class; it is implemented by a class.
 An interface can extend multiple interfaces.
Implementing Interfaces

 Once an interface has been defined, one or more classes can implement that interface. To
implement an interface, include the implements clause in a class definition, and then create
the methods defined by the interface. The general form is:
class classname extends superclass implements interface {

// class-body
}

 If a class implements more than one interface, the interfaces are separated with a comma. If a
class implements two interfaces that declare the same method, then the same method will be
used by clients of either interface. The methods that implement an interface must be declared
public.

 Differences between abstract class and interface that are given below.
Abstract class Interface

1) Abstract class can have abstract and non-
abstractmethods.

Interface can have only abstract methods.

2) Abstract class doesn't support multiple inheritance. Interface supports multiple inheritance.

3) Abstract class can have final, non-final, static and
non-static variables.

Interface has only static and final variables.

4) Abstract class can have static methods, main
method and constructor.

Interface can't have static methods, main
method or constructor.

5) Abstract class can provide the implementation of
interface.

Interface can't provide the implementation of
abstract class.

6) The abstract keyword is used to declare abstract
class.

The interface keyword is used to declare interface.

7) Example:
public abstract class Shape{
public abstract void draw();
}

Example:
public interface Drawable{
void draw();
}

UNIT-II 30 KNREDDY

JAVA PROGRAMMING

 Simply, abstract class achieves partial abstraction (0 to 100%) whereas interface achieves
fully abstraction (100%).

Understanding relationship between classes and interfaces

 As shown in the figure given below, a class extends another class, an interface extends
another interface but a class implements an interface.

public interface Series {
 int getNext(); // return next number in series
 void reset(); // restart
 void setStart(int x); // set starting value
}
// Implement Series.
class ByTwos implements Series {
 int start;
 int val;
 ByTwos() {
 start = 0;
 val = 0;
 }
 // Implement the methods specified by Series.
 public int getNext() {
 val += 2;
 return val;
 }
 public void reset() {
 val = start;
 }
 public void setStart(int x) {
 start = x;
 val = x;
 }
}
class SeriesDemo {
 public static void main(String[] args) {
 ByTwos ob = new ByTwos();
 for(int i=0; i < 5; i++)
 System.out.println("Next value is " + ob.getNext());
 System.out.println("\nResetting");
 ob.reset();
 for(int i=0; i < 5; i++)
 System.out.println("Next value is " + ob.getNext());
 System.out.println("\nStarting at 100");
 ob.setStart(100);
 for(int i=0; i < 5; i++)
 System.out.println("Next value is " + ob.getNext());
 }
}
O/P:
Next value is 2
Next value is 4
Next value is 6
Next value is 8
Next value is 10

UNIT-II 31 KNREDDY

JAVA PROGRAMMING

Resetting
Next value is 2
Next value is 4
Next value is 6
Next value is 8
Next value is 10

Starting at 100
Next value is 102
Next value is 104
Next value is 106
Next value is 108
Next value is 110

 The classes that implement an interface not only limited to those methods in an interface. The
class can provide whatever additional functionality is desired.

 Any number of classes can implement an interface.

// Implement Series a different way.
class ByThrees implements Series {
 int start;
 int val;
 ByThrees() {
 start = 0;
 val = 0;
 }
 // Implement the methods specified by Series.
 public int getNext() {
 val += 3;
 return val;
 }
 public void reset() {
 val = start;
 }
 public void setStart(int x) {
 start = x;
 val = x;
 }
}

Using interface reference:
 An interface declaration creates a new reference type. When a class implements an interface,

it is adding that interface’s type to its type.
 Interface reference variable can refer to any object that implements the interface.

class SeriesDemo2 {
 public static void main(String[] args) {
 ByTwos twoOb = new ByTwos();
 ByThrees threeOb = new ByThrees();

 Series iRef; // an interface reference

 for(int i=0; i < 5; i++) {
 iRef = twoOb; // refers to a ByTwos object
 System.out.println("Next ByTwos value is " + iRef.getNext());
 iRef = threeOb; // refers to a ByThrees object
 System.out.println("Next ByThrees value is " + iRef.getNext());
 }
 }
}

UNIT-II 32 KNREDDY

JAVA PROGRAMMING

Implementing multiple interfaces:
 A class can implement more than one interface.
 Multiple inheritance is not supported in case of class. But it is supported in case of interface

because there is no ambiguity as implementation is provided by the implementation class.

interface IfA {
 void doSomething();
}
interface IfB {
 void doSomethingElse();
}
// Implement both IfA and IfB.
class MyClass implements IfA, IfB {
 public void doSomething() {
 System.out.println("Doing something.");
 }
 public void doSomethingElse() {
 System.out.println("Doing something else.");
 }
}

 If a class implements two interfaces that declare the same method, then the same method
implementation will be used for both interfaces. This means that only one version of the
method os defined by the class.
// Both IfA and IfB declare the method doSomething().
interface IfA {
 void doSomething();
}
interface IfB {
 void doSomething();
}
// Implement both IfA and IfB
class MyClass implements IfA, IfB {
 // This method implements both IfA and IfB.
 public void doSomething() {
 System.out.println("Doing something.");
 }
}
class MultiImpDemo {
 public static void main(String[] args) {
 IfA aRef;
 IfB bRef;
 MyClass obj = new MyClass();

 // Both interfaces use the same doSomething().
 aRef = obj;
 aRef.doSomething();
 bRef = obj;
 bRef.doSomething();
 }
}

Constants in Interfaces:
 The primary purpose of an interface is to declare methods that provide a well defined interface

to functionality. An interface can also include variables, but these are not instance variables
instead they are implicitly public, final, static and must be initialized.

 To define a set of shared constants, simply create an interface that contains only those
constants without any methods. Each class that needs to access the constants simply
“implements” the interface.

UNIT-II 33 KNREDDY

JAVA PROGRAMMING

// An interface that contains constants.
interface IConst {
 int MIN = 0;
 int MAX = 10;
 String ERRORMSG = "Boundary Error";
}
// Gain access to the constants by implementing IConst.
class IConstDemo implements IConst {
 public static void main(String[] args) {
 int[] nums = new int[MAX];
 for(int i=MIN; i < (MAX + 1); i++)

{
 if(i >= MAX) System.out.println(ERRORMSG);
 else

{
 nums[i] = i;
 System.out.print(nums[i] + " ");
 }
 }
 }
}

INTERFACES CAN BE EXTENDED:
 One interface can inherit another by use of the keyword extends. The syntax is the same as

for inheriting classes.
 When a class implements an interface that inherits another interface, it must provide

implementations for all methods defined within the interface inheritance chain.

// One interface can extend another.
interface A {
 void meth1();
 void meth2();
}
// B inherits meth1() and meth2() - it adds meth3().
interface B extends A {
 void meth3();
}
// This class must implement all of A and B.
class MyClass implements B {
 public void meth1() {
 System.out.println("Implement meth1().");
 }
 public void meth2() {
 System.out.println("Implement meth2().");
 }
 public void meth3() {
 System.out.println("Implement meth3().");
 }
}
class IFExtend {
 public static void main(String[] args) {
 MyClass ob = new MyClass();
 ob.meth1();
 ob.meth2();
 ob.meth3();
 }
}
O/P:
Implement meth1().
Implement meth2().
Implement meth3().

UNIT-II 34 KNREDDY

JAVA PROGRAMMING

Nested Interfaces
 An interface can be declared a member of a class or another interface. Such an interface is

called a member interface or a nested interface.
 A nested interface can be declared as public, private, or protected. This differs from a top-

level interface, which must either be declared as public or use the default access level.
 When a nested interface is used outside of its enclosing scope, it must be qualified by the

name of the class or interface of which it is a member. Thus, outside of the class or interface
in which a nested interface is declared, its name must be fully qualified.

// A nested interface example.
// This interface contains a nested interface.
interface A {
 // this is a nested interface
 public interface NestedIF {
 boolean isNotNegative(int x);
 }
 void doSomething();
}

// This class implements the nested interface.
class B implements A.NestedIF {
 public boolean isNotNegative(int x) {
 return x < 0 ? false: true;
 }
}
class NestedIFDemo {
 public static void main(String[] args) {
 // use a nested interface reference
 A.NestedIF nif = new B();
 if(nif.isNotNegative(10))
 System.out.println("10 is not negative");
 if(nif.isNotNegative(-12))
 System.out.println("this won't be displayed");
 }
}

UNIT-II 35 KNREDDY

JAVA PROGRAMMING

PACKAGE
 A java package is a group of similar types of classes, interfaces and sub-packages.
 Package in java can be categorized in two form, built-in package and user-defined package.
 There are many built-in packages such as java, lang, awt, javax, swing, net, io, util, sql etc.
Advantage of Java Package

1) Java package is used to categorize the classes and interfaces so that they can be easily
maintained.
2) Java package provides access protection.
3) Java package removes naming collision.

Defining a Package:

 To create a package is quite easy: simply include a package command as the first statement
in a Java source file. Any classes declared within that file will belong to the specified package.
The package statement defines a name space in which classes are stored. If you omit the
package statement, the class names are put into the default package, which has no name.

 This is the general form of the package statement:
package pkg;

 Here, pkg is the name of the package. For example, the following statement creates a package
called MyPackage:

package MyPackage;
 More than one file can include the same package statement. The package statement simply

specifies to which package the classes defined in a file belong.
 You can create a hierarchy of packages. To do so, simply separate each package name from

the one above it by use of a period. The general form of a multileveled package statement is
shown here:

package pkg1[.pkg2[.pkg3]];
 A package hierarchy must be reflected in the file system of your Java development system.

For example, a package declared as
package java.awt.image;

Finding Packages and CLASSPATH

 The Java run-time system looks for packages in three ways.
 First, by default, the Java run-time system uses the current working directory as its starting

point. Thus, if your package is in a subdirectory of the current directory, it will be found.
 Second, you can specify a directory path or paths by setting the CLASSPATH environmental

variable.
 Third, you can use the -classpath option with java and javac to specify the path to your

classes.
 When the second two options are used, the class path must not include MyPack, itself. It

must simply specify the path to MyPack. For example, in a Windows environment, if the path
to MyPack is

C:\MyPrograms\Java\MyPack
 Then the class path to MyPack is

C:\MyPrograms\Java

UNIT-II 36 KNREDDY

JAVA PROGRAMMING

 A simple package example.
 Save the following file as A.java in a folder called pack.

package pack;
public class A {
 public void msg()

{
System.out.println("Hello");}

}
 Save the following file as B.java in a folder called mypack.

package mypack;
import pack.*;
class B{
 public static void main(String args[]){
 A obj = new A();
 obj.msg();
 }
}

 Assume that pack and mypack folders are in the directory E:/java.
 compile:

E:/java>javac mypack/B.java
Running:
E:/java>java mypack/B
Hello

PACKAGES AND MEMBER ACCESS:
 Java provides many levels of protection to allow fine-grained control over the visibility of

variables and methods within classes, subclasses, and packages.
 Classes and packages are both means of encapsulating and containing the name space and

scope of variables and methods.
 Packages act as containers for classes and other subordinate packages. Classes act as

containers for data and code.
 The class is Java’s smallest unit of abstraction.
 Because of the interplay between classes and packages, Java addresses four categories of

visibility for class members:
• Subclasses in the same package
• Non-subclasses in the same package
• Subclasses in different packages
• Classes that are neither in the same package nor subclasses

CLASS MEMBER ACCESS
 Private

 Member
Default
Member

Protected
Member

Public
Member

Visible within same class YES YES YES YES
Visible within same
package by subclass NO YES YES YES

Visible within same
package by non-subclass NO YES YES YES

Visible within different
package by subclass NO NO YES YES

Visible within different
by non-subclass NO NO NO YES

UNIT-II 37 KNREDDY

JAVA PROGRAMMING

A package access example:

The following is saved as Protection.java in package p1
package p1;
public class Protection {
 int n = 1;
 private int n_pri = 2;
 protected int n_pro = 3;
 public int n_pub = 4;
 public Protection() {
 System.out.println("base constructor");
 System.out.println("n = " + n);
 System.out.println("n_pri = " + n_pri);
 System.out.println("n_pro = " + n_pro);
 System.out.println("n_pub = " + n_pub);
 }
}

Derived.java in package p1
package p1;
class Derived extends Protection {
 Derived() {
 System.out.println("derived constructor");
 System.out.println("n = " + n);
 // class only
 // System.out.println("n_pri = " + n_pri);
 System.out.println("n_pro = " + n_pro);
 System.out.println("n_pub = " + n_pub);
 }
}

SamePackage.java in package p1
package p1;
class SamePackage {
 SamePackage() {
 Protection p = new Protection();
 System.out.println("same package constructor");
 System.out.println("n = " + p.n);
 // class only
 // System.out.println("n_pri = " + p.n_pri);
 System.out.println("n_pro = " + p.n_pro);
 System.out.println("n_pub = " + p.n_pub);
 }
}

Protection2.java in package p2
package p2;
class Protection2 extends p1.Protection {
 Protection2() {
 System.out.println("derived other package constructor");
 // class or package only
 // System.out.println("n = " + n);
 // class only
 // System.out.println("n_pri = " + n_pri);
 System.out.println("n_pro = " + n_pro);
 System.out.println("n_pub = " + n_pub);
 }
}

UNIT-II 38 KNREDDY

JAVA PROGRAMMING

OtherPackage.java in package p2
package p2;
class OtherPackage {
 OtherPackage() {
 p1.Protection p = new p1.Protection();
 System.out.println("other package constructor");
 // class or package only
 // System.out.println("n = " + p.n);
 // class only
 // System.out.println("n_pri = " + p.n_pri);
 // class, subclass or package only
 // System.out.println("n_pro = " + p.n_pro);
 System.out.println("n_pub = " + p.n_pub);
 }
}

// Demo package p1.
package p1;
// Instantiate the various classes in p1.
public class Demo {
 public static void main(String args[]) {
 Protection ob1 = new Protection();
 Derived ob2 = new Derived();
 SamePackage ob3 = new SamePackage();
 }
}

// Demo package p2.
package p2;
// Instantiate the various classes in p2.
public class Demo {
 public static void main(String args[]) {
 Protection2 ob1 = new Protection2();
 OtherPackage ob2 = new OtherPackage();
 }
}
O/P for Demo in p2
base constructor
n = 1
n_pri = 2
n_pro = 3
n_pub = 4
derived other package constructor
n_pro = 3
n_pub = 4
base constructor
n = 1
n_pri = 2
n_pro = 3
n_pub = 4
other package constructor
n_pub = 4

O/P for Demo in p1
base constructor
n = 1
n_pri = 2
n_pro = 3
n_pub = 4
base constructor
n = 1
n_pri = 2
n_pro = 3
n_pub = 4
derived constructor
n = 1
n_pro = 3
n_pub = 4
base constructor
n = 1
n_pri = 2
n_pro = 3
n_pub = 4
same package
constructor
n = 1
n_pro = 3
n_pub = 4

UNIT-II 39 KNREDDY

JAVA PROGRAMMING

IMPORTING PACKAGES:
 Java includes the import statement to bring certain classes, or entire packages, into visibility.
 Once imported, a class can be referred to directly, using only its name.
 In a Java source file, import statements occur immediately following the package statement

(if it exists) and before any class definitions.
 This is the general form of the import statement:

import pkg1 .pkg2.classname | *;
 Here, pkg1 is the name of a top-level package, and pkg2 is the name of a subordinate package

inside the outer package separated by a dot (.).
Eg: import mypack.MyClass;
 import mypack.*;

 * indicates that the Java compiler should import the entire package.
 All of the standard Java classes included with Java are stored in a package called java. The

basic language functions are stored in a package inside of the java package called java.lang.
 It must be emphasized that the import statement is optional. Any place you use a class

name, you can use its fully qualified name, which includes its full package hierarchy. For
example, this fragment uses an import statement:

import java.util.*;
class MyDate extends Date {
}

 The same example without the import statement looks like this:
class MyDate extends java.util.Date {
}

JAVA’S Standard packages:
Sub package Description
java.lang Contains a large number of general –purpose classes
java.io Contains the I/O classes
java.net Contains those classes that support networking
java.applet Contains classes for creating applets
java.awt Contains classes that support the Abstract Window Toolkit
java.util Contains various utility classes, plus the Collections Framework

STATIC IMPORT:

 Java includes a feature called static import that expands the capabilities of the import
keyword. By following import with the keyword static, an import statement can be used to
import the static members of a class or interface.

 When using static import, it is possible to refer to static members directly by their names,
without having to qualify them with the name of their class.
// Compute the hypotenuse of a right triangle.
import java.lang.Math.sqrt;
import java.lang.Math.pow;
class Hypot {
 public static void main(String args[]) {
 double side1, side2;
 double hypot;
 side1 = 3.0;
 side2 = 4.0;
 // Notice how sqrt() and pow() must be qualified by
 // their class name, which is Math.
 hypot = Math.sqrt(Math.pow(side1, 2) +Math.pow(side2, 2));
 System.out.println("Given sides of lengths " +side1 + " and "
 + side2 +" the hypotenuse is " +hypot);
 }
}

UNIT-II 40 KNREDDY

JAVA PROGRAMMING

 Given sides of lengths 3.0 and 4.0 the hypotenuse is 5.0
 Because pow() and sqrt() are static methods, they must be called through the use of their

class’ name, Math. This results in a somewhat unwieldy hypotenuse calculation:
hypot = Math.sqrt(Math.pow(side1, 2) + Math.pow(side2, 2));

 We can eliminate the tedium of specifying the class name through the use of static import, as
shown in the following version of the preceding program:

// Compute the hypotenuse of a right triangle.
import static java.lang.Math.sqrt;
import static java.lang.Math.pow;
class Hypot {
 public static void main(String args[]) {
 double side1, side2;
 double hypot;
 side1 = 3.0;
 side2 = 4.0;
 // Notice how sqrt() and pow() must be qualified by
 // their class name, which is Math.
 hypot = sqrt(pow(side1, 2) +pow(side2, 2));
 System.out.println("Given sides of lengths " +side1 + " and "
 + side2 +" the hypotenuse is " +hypot);
 }
}

 The second form of static import imports all static members of a given class or interface. Its
general form is shown here:

import static pkg.type-name.*;
 One other point: in addition to importing the static members of classes and interfaces defined

by the Java API, you can also use static import to import the static members of classes and
interfaces that you create.

UNIT-II 41 KNREDDY

JAVA PROGRAMMING

