
UNIT-III
REGISTER TRANSFER LANGUAGE AND DESIGN OF CONTROL UNIT

Register Transfer:

 Register Transfer Language

 Register Transfer

 Bus and Memory Transfers

 Arithmetic Micro operations

 Logic Micro operations

 Shift Micro operations

Control Unit:

 Control Memory

 Address Sequencing

 Micro program Example

 Design of Control Unit.

UNIT-III 1 KNREDDY

COMPUTER ORGANIZATION AND ARCHITECTURE

REGISTER TRANSFER LANGUAGE

 Digital systems are composed of modules that are constructed from digital components, such as

registers, decoders, arithmetic elements, and control logic

 The modules are interconnected with common data and control paths to form a digital computer

system

 The operations executed on data stored in registers are called microoperations

 A microoperation is an elementary operation performed on the information stored in one or more

registers. Examples are shift, count, clear, and load

 Some of the digital components are registers that implement microoperations

 The internal hardware organization of a digital computer is best defined by specifying

 The set of registers it contains and their functions

 The sequence of microoperations performed on the binary information stored

 The control that initiates the sequence of microoperations

 Use symbols, rather than words, to specify the sequence of microoperations.

 The symbolic notation used is called a register transfer language

 A programming language is a procedure for writing symbols to specify a given computational

process

 A register transfer language is a system for expressing in symbolic form the microoperation

sequences among the registers of a digital module. It is a convenient tool for describing the internal

organization of digital computers in concise and precise manner. It can also be used to facilitate the

design process of digital systems

REGISTER TRANSFER

 Designate computer registers by capital letters to denote its function

 The register that holds an address for the memory unit is called MAR

 The program counter register is called PC

 IR is the instruction register and R1 is a processor register

 The individual flip-flops in an n-bit register are numbered in sequence from 0 to n-1

UNIT-III 2 KNREDDY

COMPUTER ORGANIZATION AND ARCHITECTURE

LENOVO
Typewritten Text

 Designate information transfer from one register to another by

R2 ← R1

 This statement implies that the hardware is available

 The outputs of the source must have a path to the inputs of the destination

 The destination register has a parallel load capability

 If the transfer is to occur only under a predetermined control condition, designate it by

If (P = 1) then (R2 ← R1)

or,

P: R2 ← R1,

where P is a control function that can be either 0 or 1

 Every statement written in register transfer notation implies the presence of the required hardware

construction

 It is assumed that all transfers occur during a clock edge transition

 All microoperations written on a single line are to be executed at the same time

T: R2 ← R1, R1 ← R2

 The basic symbols of the register transfer notation are

UNIT-III 3 KNREDDY

COMPUTER ORGANIZATION AND ARCHITECTURE

BUS AND MEMORY TRANSFERS
 Rather than connecting wires between all registers, a common bus is used

 A bus structure consists of a set of common lines, one for each bit of a register

 Control signals determine which register is selected by the bus during each transfer

 Multiplexers can be used to construct a common bus

 Multiplexers select the source register whose binary information is then placed on the bus

 The select lines are connected to the selection inputs of the multiplexers and choose the bits of one

register

 In general, a bus system will multiplex k registers of n bits each to produce an n-line common bus.

 This requires n multiplexers – one for each bit .The size of each multiplexer must be k x 1

 The number of select lines required is log k

 To transfer information from the bus to a register, the bus lines are connected to the inputs of all

destination registers and the corresponding load control line must be activated

 Rather than listing each step as

BUS ← C, R1 ← BUS,

use R1 ← C, since the bus is implied

UNIT-III 4 KNREDDY

COMPUTER ORGANIZATION AND ARCHITECTURE

Three-State Bus Buffers

 Instead of using multiplexers, three-state gates can be used to construct the bus system

 A three-state gate is a digital circuit that exhibits three states

 Two of the states are signals equivalent to logic 1 and 0

 The third state is a high-impedance state – this

behaves like an open circuit, which means the

output is disconnected and does not have a

logic significance

 The three-state buffer gate has a normal input and a control input which determines the output state

 With control 1, the output equals the normal input

 With control 0, the gate goes to a high-impedance state

 This enables a large number of three-state gate outputs to be connected with wires to form a

common bus line without endangering loading effects

 Decoders are used to ensure that no

more than one control input is active at

any given time

 To construct a common bus for four

registers of n bits each using three-

state buffers, we need n circuits with

four buffers in each

 Only one decoder is necessary to select

between the four registers

Memory Transfer

 Designate a memory word by the letter M

 It is necessary to specify the address of M when writing memory transfer operations

 Designate the address register by AR and the data register by DR

 The read operation can be stated as:

 Read: DR ← M [AR]

 The write operation can be stated as:

Write: M [AR] ← R1

UNIT-III 5 KNREDDY

COMPUTER ORGANIZATION AND ARCHITECTURE

ARITHMETIC MICROOPERATIONS
 A micro operation is an elementary operation performed with the data stored in registers. There are

four categories of the most common microoperations:

• Register transfer: transfer binary information from one register to another

• Arithmetic: perform arithmetic operations on numeric data stored in registers

• Logic: perform bit manipulation operations on non-numeric data stored in registers

• Shift: perform shift operations on data stored in registers

 The register transfer microoperation does not change the information content when the binary

information moves from the source register to the destination register. The other three types of

microoperation change the information content during the transfer.

 The basic arithmetic microoperations are addition, subtraction, increment, decrement, and shift

 Example of addition: R3 ← R1 +R2

 Subtraction is most often implemented through complementation and addition

 Example of subtraction: R3 ← R1 +R2+ 1 (R2 is the symbol for the 1’s complement of R2.)

Adding 1 to the 1’s complement produces the 2’s complement. Adding the contents of R1 to the

2’s complement of R2 is equivalent to subtracting

 The increment and decrement microoperations are symbolized by plus-one and minus-one

operations, respectively. These microoperations are implemented with a combinational circuit or

with a binary up-down counter.

 Multiply and divide are not included as microoperations

 A microoperation is one that can be executed by one clock pulse. Multiply (divide) is implemented

by a sequence of add and shift microoperations (subtract and shift)

UNIT-III 6 KNREDDY

COMPUTER ORGANIZATION AND ARCHITECTURE

Binary Adder

 To implement the add microoperation with hardware, we need the registers that hold the data and

the digital component that performs the addition

 A full-adder adds two bits and a previous carry

 A binary adder is a digital circuit that generates the arithmetic sum of two binary numbers of any

length

 A binary added is constructed with full-adder circuits connected in cascade

 An n-bit binary adder requires n full-adders. The output carry from each full-adder is connected to

the input carry of the next-high-order full-adder.

Binary Adder-Subtractor

 The subtraction of binary numbers can be done most conveniently by means of complements.

 The subtraction A –B can be done by taking the 2’s complement of B and adding it to A.

 The 2’s complement can be obtained by taking the 1’s complement and adding one to the least

significant pair of bits. The 1’s complement can be implemented with inverters and a one can be

added to the sum through the input carry.

 The addition and subtraction operations can be combined into one common circuit by including an

XOR gate with each full-adder

 A 4-bit adder-subtract or circuit is shown in Fig. The mode input M controls the operation. When

M = 0 the circuit is an adder and when M = 1 the circuit becomes a subtractor.

UNIT-III 7 KNREDDY

COMPUTER ORGANIZATION AND ARCHITECTURE

Binary Incrementer

 The increment microoperation adds one to a number in a register

 This can be implemented by using a binary counter – every time the count enable is active, the

count is incremented by one

 If the increment is to be performed

independent of a particular register, then use

half-adders connected in cascade

 An n-bit binary incrementer requires n half-

adders

Arithmetic Circuit

 Each of the arithmetic microoperations can be implemented in one composite arithmetic circuit

 The basic component is the parallel adder

 The diagram of a 4-bit arithmetic circuit is shown in Fig.

 It has four full-adder circuits that constitute the 4-bit adder and four multiplexers for choosing

different operations. There are two 4-bit inputs A and B and a 4-bit output D.

UNIT-III 8 KNREDDY

COMPUTER ORGANIZATION AND ARCHITECTURE

 The four inputs from A go directly to the X inputs of the binary adder. Each of the four inputs from

B are connected to the data inputs of the multiplexers. The multiplexer’s data inputs also receive

the complement of B. The other two data inputs are connected to logic-0 ad logic -1

 The four multiplexers are controlled by two selection inputs, S1 and S0. The input carry Cin goes

to the carry input of the FA in the least significant position. The other carries are connected from

one stage to the next.

 The output of the binary adder is calculated from the following sum: D = A + Y + C
in

 By controlling the value of Y with the two selection inputs S1 and S0 ad making Cin equal to 0 or

1, it is possible to generate the eight arithmetic microoperations listed in Table

 When S1 S0 = 00, the value of B is applied to the Y inputs of the adder. If Cin = 0, the output

D = A + B. If Cin = 1, output D = A + B + 1. Both cases perform the add microoperation with or

without adding the input carry.

 When S1 S0 = 01, the complement of B is applied to the Y inputs of the adder. If Cin = 1, then

D =A +B+ 1. This produces A plus the 2’s complement of B, which is equivalent to a subtract with

borrow, that is, A – B – 1.

 When S1S0 = 10, the input from B are neglected, and instead, all 0’s are inserted into the Y inputs.

The output becomes D = A + 0 +Cin. This gives D = A when Cin = 0 and D = A +1 when

Cin = 1. In the first case we have a direct transfer from input A to output D. In the second case, the

value of A is incremented by 1.

 When S1 S0 = 11, all 1’s are inserted into the Y inputs of the adder to produce the decrement

operation D = A –1 when Cin. This is because a number with all 1’s is equal to the 2’s complement

of 1 (the 2’s complement of binary 0001 is 1111). Adding a number A to the 2’s complement of 1

produces F = A +2’s complement of 1 = A – 1. When Cin = 1, then D = A – 1 + 1 = A, which

causes a direct transfer from input A to output D. Note that the microoperation D = A is generated

twice, so there are only seven distinct microoperations in the arithmetic circuit.

UNIT-III 9 KNREDDY

COMPUTER ORGANIZATION AND ARCHITECTURE

LOGIC MICROOPERATIONS
 Logic operations specify binary operations for strings of bits stored in registers and treat each bit

separately.

 Example: the XOR of R1 and R2 is symbolized by P: R1 ← R1 ⊕ R2

 Example: R1 = 1010 and R2 = 1100

1010 Content of R1

1100 Content of R2

0110 Content of R1 after P = 1

 Symbols used for logical microoperations:

 OR: ∨

 AND: ∧

 XOR: ⊕

 The + sign has two different meanings: logical OR and summation

• When + is in a microoperation, then summation

• When + is in a control function, then OR

• Example:

P + Q: R1 ← R2 + R3, R4 ← R5 ∨ R6

List of Logic Microoperations

 There are 16 different logic operations that can be performed with two binary variables
Truth Tables for 16 Functions of Two Variables

 The 16 logic microoperations are derived from these functions by replacing variable x by the

binary content of register A and variable y by the binary content of register B

UNIT-III 10 KNREDDY

COMPUTER ORGANIZATION AND ARCHITECTURE

Sixteen Logic Microoperations

Hardware Implementation

 The hardware implementation of logic microoperations requires that logic gates be inserted for

each bit or pair of bits in the registers

 All 16 microoperations can be derived from using four logic gates

UNIT-III 11 KNREDDY

COMPUTER ORGANIZATION AND ARCHITECTURE

Some applications

 Logic microoperations can be used to change bit values, delete a group of bits, or insert new bit

values into a register

 The selective-set operation sets to 1 the bits in A where there are corresponding 1’s in B

1010 A before
1100 B (logic operand)
1110 A after

A ← A ∨ B
 The selective-complement operation complements bits in A where there are corresponding 1’s in B

1010 A before
1100 B (logic operand)
0110 A after

A ← A ⊕ B
 The selective-clear operation clears to 0 the bits in A only where there are corresponding 1’s in B

1010 A before
1100 B (logic operand)
0010 A after
A ← A ∧ B

 The mask operation is similar to the selective-clear operation, except that the bits of A are cleared

only where there are corresponding 0’s in B

1010 A before
1100 B (logic operand)
1000 A after

A ← A ∧ B
 The insert operation inserts a new value into a group of bits. This is done by first masking the bits

to be replaced and then ORing them with the bits to be inserted

0110 1010 A before
0000 1111 B (mask)
0000 1010 A after masking

0000 1010 A before
1001 0000 B (insert)
1001 1010 A after insertion

 The clear operation compares the bits in A and B and produces an all 0’s result if the two number

are equal

1010 A
1010 B
0000 A ← A⊕B

UNIT-III 12 KNREDDY

COMPUTER ORGANIZATION AND ARCHITECTURE

SHIFT MICROOPERATIONS
 Shift microoperations are used for serial transfer of data. They are also used in conjunction with

arithmetic, logic, and other data-processing operations

 There are three types of shifts: logical, circular, and arithmetic

 A logical shift is one that transfers 0 through the serial input

The symbols shl and shr are for logical shift-left and shift-right by one position

R1 ← shl R1

R2 ← shr R2

 The circular shift (also known as rotate operation) circulates the bits of the register around the two

ends without loss of information

The symbols cil and cir are for circular shift left and right

 The arithmetic shift shifts a signed binary number to the left or right

 To the left is multiplying by 2, to the right is dividing by 2

 Bit Rn – 1 in the leftmost position holds the sign bit. Rn—2 is the most significant bit of the number

and R0 is the least significant bit. Arithmetic shifts must leave the sign bit unchanged and shifts the

number (including the sign bit) to the right.

 The arithmetic shift-left inserts a 0 into R0, and shifts all other bits to the left. The initial bit of

Rn – 1 is lost and replaced by the bit from Rn—2. A sign reversal occurs if the bit in Rn-1 changes in

value after the shift. This happens if the multiplication causes an overflow

 An overflow flip-flop Vs can be used to detect the overflow Vs = Rn-1 ⊕ Rn-2

UNIT-III 13 KNREDDY

COMPUTER ORGANIZATION AND ARCHITECTURE

 If Vs = 0, there is no overflow, bit if Vs = 1, there is an overflow and a sign reversal after the shift.

Vs must be transferred into the overflow flip-flop with the same clock pulse that shifts the register.

Hardware implementation

 A bi-directional shift unit with parallel load could be used to implement this

 Two clock pulses are necessary with this configuration: one to load the value and another to shift

 In a processor unit with many registers it is more efficient to implement the shift operation with a

combinational circuit

 The content of a register to be shifted is first placed onto a common bus and the output is

connected to the combinational shifter, the shifted number is then loaded back into the register

 This can be constructed with multiplexers

 The 4-bit shifter has four data inputs, A0 through A3, and four data outputs, H0 through H3. There

are two serial inputs, one for shift left (IL) and the other for shift right (IR).

 When the selection input S = 0, the input data are shifted right (down in the diagram). When S = 1,

the input data are shifted left (up in the diagram).

 A shifter with n data inputs and outputs requires n multiplexers. The two serial inputs can be

controlled by another multiplexer to provide the three possible types of shifts.

UNIT-III 14 KNREDDY

COMPUTER ORGANIZATION AND ARCHITECTURE

