
UNIT III 
Exception handling: Hierarchy, Fundamentals, Multiple catch clauses, Subclass exceptions, 
Nesting try blocks, Throwing an exception, Using Finally and Throws, Built-in exceptions, 
User-defined exceptions. 
I/O: Byte streams and Classes, Character streams and Classes, Predefined streams, Using 
byte streams, Reading and Writing files using byte streams, Reading and writing binary 
data, Random-access files, File I/O using character streams, Wrappers. 
 
 
 
 
 
What is exception? 
Dictionary Meaning: Exception is an abnormal condition. 
In java, exception is an event that disrupts the normal flow of the program. It is an object which 
is thrown at runtime. 
 
What is exception handling? 
Exception Handling is a mechanism to handle runtime errors such as ClassNotFound, IO, SQL, 
Remote etc. 
Advantage of Exception Handling 
The core advantage of exception handling is to maintain the normal flow of the application. 
Exception normally disrupts the normal flow of the application that is why we use exception 
handling. Let's take a scenario: 

1. statement 1;   
2. statement 2;   
3. statement 3;   
4. statement 4;   
5. statement 5;//exception occurs   
6. statement 6;   
7. statement 7;   
8. statement 8;   
9. statement 9;   
10. statement 10;   

Suppose there is 10 statements in your program and there occurs an exception at statement 5, 
rest of the code will not be executed i.e. statement 6 to 10 will not run. If we perform exception 
handling, rest of the statement will be executed. That is why we use exception handling in java. 
 
Exception Hierarchy: 
 In Java, all exceptions are represented by classes. All exception classes are derived from a 

class called Throwable.  
 When an exception occurs in a program, an object of some type of exception class is 

generated.  
 There are two direct subclasses of Throwable: Exception and Error. 
 Exceptions of type Error are related to errors that are beyond our control, such as those that 

occur in the Java Virtual Machine itself. 
 Errors that results from program activity are represented by subclasses of Exception. For 

example, divide-by-zero, array boundary, and I/O errors. An important subclass of Exception 
is RuntimeException, which is used to represent various common types of run-time errors.  
 

 
 

  

UNIT-III 1 KNREDDY

JAVA PROGRAMMING



Exception handling Fundamentals: 
 Java exception is an object that describes an exceptional (that is, error) condition that has 

occurred in a piece of code. When an exceptional condition arises, an object representing that 
exception is created and thrown in the method that caused the error. 

 Java exception handling is managed via five keywords: try, catch, throw, throws, and 
finally. 

 Program statements that you want to monitor for exceptions are contained within a try block. 
If an exception occurs within the try block, it is thrown.  

 The code can catch this exception using catch and handle it in some rational manner. 
  System-generated exceptions are automatically thrown by the Java runtime system.  
 To manually throw an exception, use the keyword throw. Any exception that is thrown out of 

a method must be specified as such by a throws clause. 
 Any code that absolutely must be executed after a try block completes is put in a finally 

block. 
 The general form of try/catch exception handling blocks: 

try{ 
 // block of code to monitor for errors 
} 
catch(ExceptionType1 exOb){ 
 // handle for ExceptionType1 
} 
catch(ExceptionType2 exOb){ 
 // handle for ExceptionType2 
} 
. 
. 

  When an exception is thrown, it is caught by its corresponding catch clause, which then 
processes the execution. When an exception is caught exOb will receive its value. 

  If no exception is thrown, then a try block ends normally, and all of its catch blocks are 
bypassed. Execution resumes with the first statement following the last catch. 
/*A simple Exception example */ 
// Demonstrate exception handling. 
class ExcDemo1 { 
  public static void main(String[] args) { 
   int[] nums = new int[4]; 
   try { 
    System.out.println("Before exception is generated."); 
    // generate an index out-of-bounds exception 
    nums[7] = 10; 
    System.out.println("this won't be displayed");  
 } 
  catch (ArrayIndexOutOfBoundsException exc) { 
   // catch the exception 
   System.out.println("Index out-of-bounds!"); 
 } 
 System.out.println("After catch."); 
  } 
} 
O/P: 
Before exception is generated. 
Index out-of-bounds! 
After catch. 
 

 Once an exception is thrown, program control transfers out of the try block into the catch 
block. catch is not “called,” so execution never “returns” to the try block from a catch. Thus, 
the line “this won't be displayed” is not displayed. Once the catch statement has executed, 
program control continues with the next line in the program following the entire try / catch 
mechanism. 

 
 
 

UNIT-III 2 KNREDDY

JAVA PROGRAMMING



Uncaught Exceptions 
 When an exception is thrown, it must be caught by some piece of code; Any exception that is 

not caught by your program will ultimately be processed by the default handler. The default 
handler displays a string describing the exception, prints a stack trace from the point at 
which the exception occurred, and terminates the program. 

 Problem without exception handling 
Let's try to understand the problem if we don't use try-catch block. 
public class Testtrycatch1{   
  public static void main(String args[]){   
      int data=50/0;//may throw exception   
      System.out.println("rest of the code...");   
   }   
}   
Output: 
Exception in thread main java.lang.ArithmeticException:/ by zero 

 As displayed in the above example, rest of the code is not executed (in such case, rest of the 
code... statement is not printed). 

 Solution by exception handling 
 It is important to handle exceptions by the program itself rather than rely on JVM 

Let's see the solution of above problem by java try-catch block. 
 
public class Testtrycatch2{   
  public static void main(String args[]){   
  try{   
     int data=50/0;   
  }catch(ArithmeticException e){System.out.println(e);}   
   System.out.println("rest of the code...");   
}   
}   
 

 Output: 
Exception in thread main java.lang.ArithmeticException:/ by zero 
rest of the code... 
 

 Now, as displayed in the above example, rest of the code is executed i.e. rest of the code... 
statement is printed. 

  The type of exception must match the type specified in a catch. If it does not, the exception 
would not be caught. 
 
// This won't work! 
class ExcTypeMismatch { 
  public static void main(String[] args) { 
    int[] nums = new int[4]; 
 
    try { 
      System.out.println("Before exception is generated."); 
 
      //generate an index out-of-bounds exception 
      nums[7] = 10; 
      System.out.println("this won't be displayed"); 
    } 
 
    /* Can't catch an array boundary error with an ArithmeticException. */ 
    catch (ArithmeticException exc) { 
      // catch the exception 
      System.out.println("Index out-of-bounds!"); 
    }  
 
 
 
 

UNIT-III 3 KNREDDY

JAVA PROGRAMMING



Multiple catch Clauses  
 
 We can specify two or more catch clauses, each catching a different type of exception.  
 When an exception is thrown, each catch statement is inspected in order, and the first one 

whose type matches that of the exception is executed. After one catch statement executes, the 
others are bypassed, and execution continues after the try / catch block. 
 
public class TestMultipleCatchBlock{   
  public static void main(String args[]){   
   try{   
    int a[]=new int[5];   
    a[5]=30/0;   
   }   
   catch(ArithmeticException e){System.out.println("task1 is completed");}   
   catch(ArrayIndexOutOfBoundsException e){System.out.println("task 2 completed");}   
   catch(Exception e){System.out.println("common task completed");}   
   System.out.println("rest of the code...");   
 }   
}   

  Output: 
task1 completed 

        rest of the code... 
 Rule: At a time only one Exception is occured and at a time only one catch block is 

executed. 
 

Catching subclass Exceptions 
 
 When you use multiple catch statements, it is important to remember that exception 

subclasses must come before any of their superclasses. This is because a catch statement 
that uses a superclass will catch exceptions of that type plus any of its subclasses. Thus, a 
subclass would never be reached if it came after its superclass. 

 Rule: All catch blocks must be ordered from most specific to most general i.e. catch for 
ArithmeticException must come before catch for Exception. 
 
class TestMultipleCatchBlock1{   
  public static void main(String args[]){   
   try{   
    int a[]=new int[5];   
    a[5]=30/0;   
   }   
   catch(Exception e){System.out.println("common task completed");}   
   catch(ArithmeticException e){System.out.println("task1 is completed");}   
   catch(ArrayIndexOutOfBoundsException e){System.out.println("task 2 completed");}   
   System.out.println("rest of the code...");   
 }   
}   
 

Output: 
Compile-time error 

  
 
 
 
 
 
 

UNIT-III 4 KNREDDY

JAVA PROGRAMMING



Nesting try blocks 
 The try statement can be nested. That is, a try statement can be inside the block of another 

try.  
 Each time a try statement is entered, the context of that exception is pushed on the stack. If 

an inner try statement does not have a catch handler for a particular exception, the stack is 
unwound and the next try statement’s catch handlers are inspected for a match. This 
continues until one of the catch statements succeeds, or until all of the nested try 
statements are exhausted.  

 If no catch statement matches, then the Java run-time system will handle the exception.  
 
// Use a nested try block. 
class nestTrys { 
  public static void main(String[] args) { 
    // Here, numer is longer than denom. 
    int[] numer = { 4, 8, 16, 32, 64, 128, 256, 512 }; 
    int[] denom = { 2, 0, 4, 4, 0, 8 }; 
    try { // outer try 
      for(int i=0; i<numer.length; i++) { 
        try { // nested try 
          System.out.println(numer[i] + " / " + 
                             denom[i] + " is " + 
                             numer[i]/denom[i]); 
        } 
        catch (ArithmeticException exc) { 
          // catch the exception 
          System.out.println("Can't divide by Zero!"); 
        } 
      } 
    } 
    catch (ArrayIndexOutOfBoundsException exc) { 
      // catch the exception 
      System.out.println("No matching element found."); 
      System.out.println("Fatal error - program terminated."); 
    } 
  } 
} 
 
 OUTPUT: 
4 / 2 is 2 
Can't divide by Zero! 
16 / 4 is 4 
32 / 4 is 8 
Can't divide by Zero! 
128 / 8 is 16 
No matching element found. 
Fatal error - program terminated. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

UNIT-III 5 KNREDDY

JAVA PROGRAMMING



THROWING AN EXCEPTION:  
 It is possible to manually throw an exception explicitly,  by using the throw statement.  
 The general form of throw is shown here: 

throw exceptionobject; 
Here, exceptionobject must be an object of type Throwable or a subclass of Throwable. Primitive 
types, such as int or char, as well as non-Throwable classes, such as String and Object, cannot 
be used as exceptions. 
 The flow of execution stops immediately after the throw statement; any subsequent 

statements are not executed.  
// Manually throw an exception. 
class ThrowDemo { 
  public static void main(String[] args) { 
    try { 
      System.out.println("Before throw."); 
      throw new ArithmeticException(); 
    } 
    catch (ArithmeticException exc) { 
      System.out.println("Exception caught."); 
    } 
    System.out.println("After try/catch block."); 
  } 
} 
OUTPUT: 
Before throw. 
Exception caught. 
After try/catch block. 
  
 
Rethrowing an Exception:   

 An exception caught by one catch can be rethrown so that it can be caught by an outer catch. 
The most likely reason for rethrowing this way is to allow multiple handlers access to the 
exception. 

 To rethrow an exception use a throw statement inside a catch clause, throwing the exception 
passed as an argument. 
 
// Rethrow an exception. 
class Rethrow { 
  public static void genException() { 
    // here, numer is longer than denom 
    int[] numer = { 4, 8, 16, 32, 64, 128, 256, 512 }; 
    int[] denom = { 2, 0, 4, 4, 0, 8 }; 
    for(int i=0; i<numer.length; i++) { 
      try { 
        System.out.println(numer[i] + " / " +denom[i] + " is " + numer[i]/denom[i]); 
      } 
      catch (ArithmeticException exc) { 
        // catch the exception 
        System.out.println("Can't divide by Zero!"); 
      } 
      catch (ArrayIndexOutOfBoundsException exc) { 
        System.out.println("No matching element found."); 
        throw exc; // rethrow the exception 
      } 
    } 
  } 
} 
 
 
 
 
 

UNIT-III 6 KNREDDY

JAVA PROGRAMMING



class RethrowDemo { 
  public static void main(String[] args) { 
    try { 
      Rethrow.genException(); 
    } 
    catch(ArrayIndexOutOfBoundsException exc) { 
      // recatch exception 
      System.out.println("Fatal error - " +  
                         "program terminated."); 
    } 
  } 
} 
OUTPUT: 
4 / 2 is 2 
Can't divide by Zero! 
16 / 4 is 4 
32 / 4 is 8 
Can't divide by Zero! 
128 / 8 is 16 
No matching element found. 
Fatal error - program terminated. 
 
 

Using finally: 
 finally creates a block of code that will be executed after a try /catch block has completed 

and before the code following the try/catch block.  
 The finally block will execute whether or not an exception is 

thrown. If an exception is thrown, the finally block will 
execute even if no catch statement matches the exception.  

 Any time a method is about to return to the caller from inside 
a try/catch block, via an uncaught exception or an explicit 
return statement, the finally clause is also executed just 
before the method returns.  

 The finally clause is optional.  
 finally block in java can be used to put "cleanup" code such 

as closing a file, closing connection etc 
  Rule: For each try block there can be zero or more catch 

blocks, but only one finally block. 
 Note: The finally block will not be executed if program 

exits(either by calling System.exit() or by causing a fatal 
error that causes the process to abort). 
 

Usage of Java finally 
Let's see the different cases where java finally block can be used. 
Case 1 
Let's see the java finally example where exception doesn't occur. 

class TestFinallyBlock{   
  public static void main(String args[]){   
  try{   
   int data=25/5;   
   System.out.println(data);   
  }   
  catch(NullPointerException e){System.out.println(e);}   
  finally{System.out.println("finally block is always executed");}   
  System.out.println("rest of the code...");   
  }   
}   

Output: 
5 

        finally block is always executed 
        rest of the code... 

UNIT-III 7 KNREDDY

JAVA PROGRAMMING



Case 2 
Let's see the java finally example where exception occurs and not handled. 

class TestFinallyBlock1{   
  public static void main(String args[]){   
  try{   
   int data=25/0;   
   System.out.println(data);   
  }   
  catch(NullPointerException e){System.out.println(e);}   
  finally{System.out.println("finally block is always executed");}   
  System.out.println("rest of the code...");   
  }   
}   

Output: 
       finally block is always executed 
       Exception in thread main java.lang.ArithmeticException:/ by zero 
Case 3 
Let's see the java finally example where exception occurs and handled. 

public class TestFinallyBlock2{   
  public static void main(String args[]){   
  try{   
   int data=25/0;   
   System.out.println(data);   
  }   
  catch(ArithmeticException e){System.out.println(e);}   
  finally{System.out.println("finally block is always executed");}   
  System.out.println("rest of the code...");   
  }   
}   

Output: 
Exception in thread main java.lang.ArithmeticException:/ by zero 

        finally block is always executed 
        rest of the code... 
 
 
Using Throws:  
 If a method generates an exception that it does not handle, it must specify that exception in a 

throws clause. 
 A throws clause lists the types of exceptions that a method might throw. This is necessary for 

all exceptions, except those of type Error or RuntimeException, or any of their subclasses. 
 All other exceptions that a method can throw must be declared in the throws clause. If they 

are not, a compile-time error will result. 
 This is the general form of a method declaration that includes a throws clause: 
 type method-name(parameter-list) throws exception-list 

{ 
// body of method 

} 
 Here, exception-list is a comma-separated list of the exceptions that a method can throw. 
 Which exception should be declared 

Ans) checked exception only, because: 
unchecked Exception: under your control so correct your code. 
error: beyond your control e.g. you are unable to do anything if there occurs 
VirtualMachineError or StackOverflowError. 
Advantage of Java throws keyword 

 Now Checked Exception can be propagated (forwarded in call stack). It provides information to 
the caller of the method about the exception. 
 
 

UNIT-III 8 KNREDDY

JAVA PROGRAMMING



Java throws example 
 Let's see the example of java throws clause which describes that checked exceptions can be 

propagated by throws keyword. 

import java.io.IOException;   
class Testthrows1{   
  void m()throws IOException{   
    throw new IOException("device error");//checked exception   
  }   
  void n()throws IOException{   
    m();   
  }   
  void p(){   
   try{   
    n();   
   }catch(Exception e){System.out.println("exception handled");}   
  }   
  public static void main(String args[]){   
   Testthrows1 obj=new Testthrows1();   
   obj.p();   
   System.out.println("normal flow...");   
  }   
}   
 
Output: 
exception handled 
normal flow... 
 
 Rule: If you are calling a method that declares an exception, you must either caught 

or declare the exception. 
 
There are two cases: 

 Case1: You caught the exception i.e. handle the exception using try/catch. 
 Case2: You declare the exception i.e. specifying throws with the method. 

Case1: You handle the exception 
 In case you handle the exception, the code will be executed fine whether exception occurs 

during the program or not. 

import java.io.*;   
class M{   
 void method()throws IOException{   
  throw new IOException("device error");   
 }   
}   
public class Testthrows2{   
   public static void main(String args[]){   
    try{   
     M m=new M();   
     m.method();   
    }catch(Exception e){System.out.println("exception handled");}      
   
    System.out.println("normal flow...");   
  }   
}   

Output: 
exception handled 
normal flow... 
 

UNIT-III 9 KNREDDY

JAVA PROGRAMMING



Case2: You declare the exception 
 A)In case you declare the exception, if exception does not occur, the code will be executed fine. 
 B)In case you declare the exception if exception occures, an exception will be thrown at  

runtime because throws does not handle the exception. 

A)Program if exception does not occur 
import java.io.*;   
class M{   
 void method()throws IOException{   
  System.out.println("device operation performed");   
 }   
}   
class Testthrows3{   
   public static void main(String args[])throws IOException{//declare exception   
     M m=new M();   
     m.method();   
   
    System.out.println("normal flow...");   
  }   
}   
Output: 
device operation performed 
normal flow... 
 
B) Program if exception occurs 
import java.io.*;   
class M{   
 void method()throws IOException{   
  throw new IOException("device error");   
 }   
}   
class Testthrows4{   
   public static void main(String args[])throws IOException{//declare exception   
     M m=new M();   
     m.method();   
   
    System.out.println("normal flow...");   
  }   
}   
Output: 
Runtime Exception 
 
 
Difference between throw and throws in Java 
There are many differences between throw and throws keywords. A list of differences between 
throw and throws are given below: 
 throw throws 

1) Java throw keyword is used to explicitly 
throw an exception. 

Java throws keyword is used to declare an 
exception. 

2) Checked exception cannot be propagated 
using throw only. 

Checked exception can be propagated with 
throws. 

3) Throw is followed by an instance. Throws is followed by class. 

4) Throw is used within the method. Throws is used with the method signature. 

5) You cannot throw multiple exceptions. You can declare multiple exceptions e.g. 
public void method()throws 
IOException,SQLException. 

 

UNIT-III 10 KNREDDY

JAVA PROGRAMMING



Java’s Built-in Exceptions 
 Inside the standard package java.lang, Java defines several exception classes.  
 The most general of these exceptions are subclasses of the standard type RuntimeException.  
 In the language of Java, these are called unchecked exceptions because the compiler does not 

check to see if a method handles or throws these exceptions. The unchecked exceptions 
defined in java.lang are listed in Table.   

 Java defines several other types of exceptions that relate to its various class libraries. 
Following is the list of Java Unchecked RuntimeException. 

 Exception Description 

ArithmeticException Arithmetic error, such as divide-by-zero. 

ArrayIndexOutOfBoundsExceptio
n 

Array index is out-of-bounds. 

ArrayStoreException Assignment to an array element of an incompatible type. 

ClassCastException Invalid cast. 

IllegalArgumentException Illegal argument used to invoke a method. 

IllegalMonitorStateException Illegal monitor operation, such as waiting on an unlocked 
thread. 

IllegalStateException Environment or application is in incorrect state. 

IllegalThreadStateException Requested operation not compatible with current thread 
state. 

IndexOutOfBoundsException Some type of index is out-of-bounds. 

NegativeArraySizeException Array created with a negative size. 

NullPointerException Invalid use of a null reference. 

NumberFormatException Invalid conversion of a string to a numeric format. 

SecurityException Attempt to violate security. 

StringIndexOutOfBound Attempt to index outside the bounds of a string. 

UnsupportedOperationException An unsupported operation was encountered. 

 

 Following is the list of Java Checked Exceptions Defined in java.lang. 
 
Exception Description 

ClassNotFoundException Class not found. 

CloneNotSupportedException Attempt to clone an object that does not implement the 
Cloneable interface. 

IllegalAccessException Access to a class is denied. 

InstantiationException Attempt to create an object of an abstract class or interface. 

InterruptedException One thread has been interrupted by another thread. 

NoSuchFieldException A requested field does not exist. 

NoSuchMethodException A requested method does not exist. 

 
 

 

UNIT-III 11 KNREDDY

JAVA PROGRAMMING



 User-Defined Exceptions: 
 
 We can create our own exceptions easily by making them a subclass of an existing exception, 

such as Exception, the superclass of all exceptions. In a subclass of Exception, there are only 
two methods you might want to override: Exception () with no arguments and Exception () 
with a String as an argument. In the latter, the string should be a message describing the 
error that has occurred.  
 

import java.util.Scanner; 
class InvalidAgeException extends Exception{ 
 InvalidAgeException(String s){   
  super(s);   
 } 
 public String toString(){ 
  return "age is less than 18. not eligible to vote"; 
 } 
 }   
class Validateage { 
 static void validate(int age)throws InvalidAgeException{   
      if(age<18)   
       throw new InvalidAgeException("not valid");   
      else   
       System.out.println("welcome to vote");   
 }   
} 
public class UDExcepiton {     
 public static void main(String args[]){   
  Scanner s=new Scanner(System.in); 
  System.out.println("Enter age"); 
  int age=s.nextInt(); 
  try{   
   Validateage.validate(age);   
  } 
  catch(Exception m){ 
   System.out.println("Exception occured: "+m); 
  }   
 }   
}   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

UNIT-III 12 KNREDDY

JAVA PROGRAMMING



I/O: 
 Java programs perform I/O through streams. A stream is an abstraction that either produces 

or consumes information. A stream is linked to a physical device by the Java I/O system. 
 All streams behave in the same manner, even if the actual physical devices to which they are 

linked differ. Thus, the same I/O classes and methods can be applied to any type of device. 
 Java implements streams within class hierarchies defined in the java.io package. 

 
Byte Streams and Character Streams  
 Java defines two types of streams: byte and character.  
 Byte streams provide a convenient means for handling input and output of bytes. Byte 

streams are used, for example, when reading or writing binary data.  
 Character streams provide a convenient means for handling input and output of characters. 

They use Unicode and, therefore, can be internationalized. Also, in some cases, character 
streams are more efficient than byte streams. 

 At the lowest level, all I/O is still byte-oriented. The character-based streams simply provide a 
convenient and efficient means for handling characters. 
 
 
The Byte Stream Classes 

 Byte streams are defined by using two class hierarchies. At the top are two abstract classes: 
InputStream and OutputStream. Each of these abstract classes has several concrete 
subclasses that handle the differences among various devices, such as disk files, network 
connections, and even memory buffers. The byte stream classes in java.io are shown in Table  
 

 
 
 
 
 
 

UNIT-III 13 KNREDDY

JAVA PROGRAMMING



The Character Stream Classes 
 Character streams are defined by using two class hierarchies. At the top are two abstract 

classes: Reader and Writer. These abstract classes handle Unicode character streams. 
 Java has several concrete subclasses of each of these. The character stream classes in java.io 

are shown in Table . 

  
 

The Predefined Streams 

  java.lang package defines a class called System, which encapsulates several aspects of the 
runtime environment.  

 System also contains three predefined stream variables: in, out, and err. These fields are 
declared as public, static, and final within System. This means that they can be used by any 
other part of your program and without reference to a specific System object. 

 System.out refers to the standard output stream. By default, this is the console. 
 System.in refers to standard input, which is the keyboard by default.  
 System.err refers to the standard error stream, which also is the console by default.  
 System.in is an object of type InputStream; System.out and System.err are objects of type 

PrintStream. These are byte streams, even though they are typically used to read and write 
characters from and to the console.  

 

 

 

 

UNIT-III 14 KNREDDY

JAVA PROGRAMMING



Using Byte streams: 
Reading Console Input 
 InputStream, defines only one input method, read(), which reads bytes. There are three 

versions of read() 
int read() throws IOException 
int read(byte[] buffer) throws IOException 
int read(byte[] buffer, int offset, int numBytes) throws IOException 

 The first version read a single character from the keyboard. It returns -1 when the end of 
stream is encountered. 

 The second version reads bytes from the input stream and puts them into buffer until either 
the array is full, the end of stream is reached or an error occurs. It returns the number of 
bytes read or -1 when the end of stream is encountered. 

 The third version reads input into buffer beginning at location specified by offset upto 
numBytes bytes are stored. It returns the number of bytes read or -1 when the end of stream 
is encountered. 
 
import java.io.*; 
 
class ReadBytes { 
  public static void main(String[] args) throws IOException { 
      byte[] data = new byte[10]; 
 
      System.out.println("Enter some characters."); 
      int numRead = System.in.read(data); 
      System.out.print("You entered: "); 
      for(int i=0; i < numRead; i++) 
        System.out.print((char) data[i]); 
  } 
}  

Writing Console Output 
 Console output is most easily accomplished with print( ) and println( ). These methods are 

defined by the class PrintStream (which is the type of object referenced by System.out). 
 Because PrintStream is an output stream derived from OutputStream, it also implements 

the low-level method write( ). Thus, write( ) can be used to write to the console. The simplest 
form of write( ) defined by PrintStream is shown here: 

void write(int b)  
 This method writes the byte specified by b. Although b is declared as an integer, only the low-

order eight bits are written. 
// Demonstrate System.out.write(). 
class WriteDemo { 
  public static void main(String[] args) { 
    int b; 
 
    b = 'X'; 
    System.out.write(b); 
    System.out.write('\n'); 
  } 
} 
 
 
 
 
 
 
 
 
 
 
 
 
 

UNIT-III 15 KNREDDY

JAVA PROGRAMMING



READING AND WRITING FILES USING BYTE STREAMS: 
 Java provides a number of classes and methods that allow you to read and write files. 
 Two of the most often-used stream classes are FileInputStream and FileOutputStream, 

which create byte streams linked to files. To open a file, simply create an object of one of these 
classes, specifying the name of the file as an argument to the constructor. 
FileInputStream(String fileName) throws FileNotFoundException 
FileOutputStream(String fileName) throws FileNotFoundException 

 Here, fileName specifies the name of the file that you want to open. When you create an input 
stream, if the file does not exist, then FileNotFoundException is thrown. For output 
streams, if the file cannot be opened or created, then FileNotFoundException is thrown.  

 FileNotFoundException is a subclass of IOException.  
 When an output file is opened, any preexisting file by the same name is destroyed. 
 To read from a file, you can use a version of read( ) that is defined within FileInputStream.  

int read( ) throws IOException 
 Each time that it is called, it reads a single byte from the file and returns the byte as an 

integer value. read( ) returns –1 when the end of the file is encountered. It can throw an 
IOException. 

 When you are done with a file, you must close it. This is done by calling the close( ) method, 
which is implemented by both FileInputStream and FileOutputStream. It is shown here: 

void close( ) throws IOException 
 Closing a file releases the system resources allocated to the file, allowing them to be used by 

another file. Failure to close a file can result in “memory leaks” because of unused resources 
remaining allocated. 
/* Display a text file. 

   To use this program, specify the name   of the file that you want to see.    For example, to see a 
file called TEST.TXT,   use the following command line.   java ShowFile TEST.TXT*/ 
import java.io.*; 
class ShowFile { 
  public static void main(String[] args) 
  { 
    int i; 
    FileInputStream fin; 
    // First make sure that a file has been specified. 
    if(args.length != 1) { 
      System.out.println("Usage: ShowFile File"); 
      return; 
    } 
    try { 
      fin = new FileInputStream(args[0]); 
    } catch(FileNotFoundException exc) { 
      System.out.println("File Not Found"); 
      return; 
    } 
    try { 
      // read bytes until EOF is encountered 
      do { 
        i = fin.read(); 
        if(i != -1) System.out.print((char) i); 
      } while(i != -1); 
    } catch(IOException exc) { 
      System.out.println("Error reading file."); 
    } 
    try { 
      fin.close(); 
    } catch(IOException exc) { 
      System.out.println("Error closing file."); 
    } 
  } 
} 

UNIT-III 16 KNREDDY

JAVA PROGRAMMING



 In the above code close( )  can be written within a finally block. In this approach, all of the 
methods that access the file are contained within a try block, and the finally block is used to 
close the file.  
 

 Sometimes it’s easier to wrap the portions of a program that open the file and access the file 
within a single try block (rather than separating the two) and then use a finally block to close 
the file. 

 
 

/* This variation wraps the code that opens and accesses the file within a single try block. 
   The file is closed by the finally block.  */ 
 
import java.io.*; 
 
class ShowFile { 
  public static void main(String[] args) 
  { 
    int i; 
    FileInputStream fin = null; 
 
    // First, confirm that a file name has been specified. 
    if(args.length != 1) { 
      System.out.println("Usage: ShowFile filename"); 
      return; 
    } 
 
    // The following code opens a file, reads characters until EOF 
    // is encountered, and then closes the file via a finally block. 
    try { 
      fin = new FileInputStream(args[0]); 
 
      do { 
        i = fin.read(); 
        if(i != -1) System.out.print((char) i); 
      } while(i != -1); 
 
    } catch(FileNotFoundException exc) { 
      System.out.println("File Not Found."); 
    } catch(IOException exc) { 
      System.out.println("An I/O Error Occurred"); 
    } finally { 
      // Close file in all cases. 
      try { 
        if(fin != null) fin.close(); 
      } catch(IOException exc) { 
        System.out.println("Error Closing File"); 
      } 
    } 
  } 
} 
 
 
 
 
 
 

UNIT-III 17 KNREDDY

JAVA PROGRAMMING



Writing to a file: 
 To write to a file, you can use the write( ) method defined by FileOutputStream.  

void write(int b) throws IOException 
 This method writes the byte specified by b to the file. Although b is declared as an integer, 

only the low-order eight bits are written to the file. If an error occurs during writing, an 
IOException is thrown.  

/* Copy a text file. To use this program, specify the name of the source file and the destination 
file. For example, to copy a file called FIRST.TXT to a file called SECOND.TXT, use the following    
command line. java CopyFile FIRST.TXT SECOND.TXT  */ 
 
import java.io.*; 
 
class CopyFile { 
  public static void main(String[] args) 
  { 
    int i; 
    FileInputStream fin = null; 
    FileOutputStream fout = null; 
 
    // First, make sure that both files has been specified. 
    if(args.length != 2) { 
      System.out.println("Usage: CopyFile from to"); 
      return; 
    } 
 
    // Copy a File. 
    try { 
      // Attempt to open the files. 
      fin = new FileInputStream(args[0]); 
      fout = new FileOutputStream(args[1]); 
 
      do { 
        i = fin.read(); 
        if(i != -1) fout.write(i); 
      } while(i != -1); 
 
    } catch(IOException exc) { 
      System.out.println("I/O Error: " + exc); 
    } finally { 
      try { 
        if(fin != null) fin.close(); 
      } catch(IOException exc) { 
        System.out.println("Error Closing Input File"); 
      } 
      try { 
        if(fout != null) fout.close(); 
      } catch(IOException exc) { 
        System.out.println("Error Closing Output File"); 
      } 
    } 
  } 
} 
 
 
 
 
 
 
 
 
 

UNIT-III 18 KNREDDY

JAVA PROGRAMMING



AUTOMATICALLY CLOSING A FILE: 
 
 JDK 7 adds a new feature to manage resources, such as file streams, by automating the 

closing process. This feature, sometimes referred to as automatic resource management, or 
ARM for short. 

 Automatic resource management is based on an expanded form of the try statement. 
Here is its general form: 

try (resource-specification) { 
// use the resource 

} 
 Here, resource-specification is a statement that declares and initializes a resource, such as a 

file stream. 
 It consists of a variable declaration in which the variable is initialized with a reference to the 

object being managed. When the try block ends, the resource is automatically released. 
 The try-with-resources statement can be used only with those resources that implement the 

AutoCloseable interface defined by java.lang. This interface defines the close( ) method. 
 AutoCloseable is inherited by the Closeable interface in java.io. Both interfaces are 

implemented by the stream classes. Thus, try-with-resources can be used when working with 
streams, including file streams. 
 
/* This version of the ShowFile program uses a try-with-resources 
   statement to automatically close a file when it is no longer needed. 
 
   Note: This code requires JDK 7 or later. 
*/ 
 
import java.io.*; 
 
class ShowFile { 
  public static void main(String[] args) 
  { 
    int i; 
 
    // First, make sure that a file name has been specified. 
    if(args.length != 1) { 
      System.out.println("Usage: ShowFile filename"); 
      return; 
    } 
 
    // The following code uses try-with-resources to open a file 
    // and then automatically close it when the try block is left. 
    try(FileInputStream fin = new FileInputStream(args[0])) { 
 
      do { 
        i = fin.read(); 
        if(i != -1) System.out.print((char) i); 
      } while(i != -1); 
 
    }  
    catch(IOException exc) { 
      System.out.println("I/O Error: " + exc); 
    } 
  } 
}  
 

 We can manage more than one resource within a single try statement. To do so, simply 
separate each resource specification with a semicolon. 
try (FileInputStream fin = new FileInputStream(args[0]); 
      FileOutputStream fout = new FileOutputStream(args[1]))  
 

UNIT-III 19 KNREDDY

JAVA PROGRAMMING



Reading and writing binary data  
 To read and write binary values of java primitive types we can use DataInputStream and 

DataOutputStream . 
 DataOutputStream implements the DataOutput interface. This interface defines methods 

that write all of Java’s primitive types to a file. It is important to understand that this data is 
written using its internal, binary format.  

 Output methods defined by DataOutputStream. 
Output Method Purpose 
void writeBoolean(boolean val) Writes the boolean specified by val 
void writeByte(int val) Writes the lower-order byte specified by val 
void writeChar(int val) Writes the value specified by val as a char 
void writeDouble(double val) Writes the double specified by val 
void writeFloat(float val) Writes the float specified by val 
void writeInt(int val) Writes the int specified by val 
void writeLong(long val) Writes the long specified by val 
void writeShort(int val) Writes the value specified by val as a short 

 
 The constructor for DataOutputStream is : 

DataOutputStream(OutputStream  outputstream)  
Here outputstream is the stream to which data is written. To write output to a file we can use 
the object created by FileOutputStream. 

 DataInputStream implements the DataInput interface which provides methods for reading all 
of java’s primitives 

Input Method Purpose 
boolean 
readBoolean() 

Reads a boolean  

byte readByte() Reads a byte  
char readChar() Reads a char 
double 
ReadDouble() 

Reads a double  

float readFloat() Reads a float  
int readInt() Reads an int  
long readLong() Reads a long  
short readShort() Reads a short 

  
 The constructor for DataInputStream is: 

DataInputStream(Inputstream inputstream) 
Here inputstream is the stream that is linked to the instance of DataInputStream being 
created. To read input from a file we can use the object created by FileInputStream 
 
 
// Write and then read back binary data. 
// This code requires JDK 7 or later. 
 
import java.io.*; 
class RWData { 
  public static void main(String[] args) 
  { 
    int i = 10; 
    double d = 1023.56; 
    boolean b = true; 
    // Write some values. 
    try (DataOutputStream dataOut = 
               new DataOutputStream(new FileOutputStream("testdata"))) 
    { 
      System.out.println("Writing " + i); 
      dataOut.writeInt(i); 
 
      System.out.println("Writing " + d); 
      dataOut.writeDouble(d); 

UNIT-III 20 KNREDDY

JAVA PROGRAMMING



 
      System.out.println("Writing " + b); 
      dataOut.

writeBoolean(b); 
 
      System.out.println("Writing " +12.2 * 7.4); 
      dataOut.writeDouble(12.2 * 7.4); 
    } 
    catch(IOException exc) { 
      System.out.println("Write error."); 
      return; 
    } 
    System.out.println(); 
    // Now, read them back. 
    try (DataInputStream dataIn = 
             new DataInputStream(new FileInputStream("testdata"))) 
    { 
      i = dataIn.readInt(); 
      System.out.println("Reading " + i); 
      d = dataIn.readDouble(); 
      System.out.println("Reading " + d); 
 
      b = dataIn.readBoolean(); 
      System.out.println("Reading " + b); 
 
      d = dataIn.readDouble(); 
      System.out.println("Reading " + d); 
    } 
    catch(IOException exc) { 
      System.out.println("Read error."); 
    } 
  } 
}
 
 
OUTPUT: 
Writing 10 
Writing 1023.56 
Writing true 
Writing 90.28 
 
Reading 10 
Reading 1023.56 
Reading true 
Reading 90.28 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

UNIT-III 21 KNREDDY

JAVA PROGRAMMING



RANDOM ACCESS FILES: 
 To access the contents of a file in random order we can use RandomAccessFile. 
 RandomAccessFile implements the interface DataInput and DataOutput. 

RandomAccessFile(String filename, String access) throws FileNotFoundException  
 Here, the name of the file is passed in filename, and access determines what type of file 

access is permitted. “r”- the file can be read but not written;  
“rw”- the file is opened in read-write mode 

 The method seek() is used to set current position of the file pointer within the file: 
void seek(long newPos) throws IOException  

 Here newPos specifies the new position, in bytes, of the file pointer from the beginning of the 
file. 
 
import java.io.*; 
 
class Random{ 
  public static void main(String[] args) 
  { 
       int d; 
     // Open and use a random access file. 
     try (RandomAccessFile raf = new RandomAccessFile("knr.txt", "rw")) 
     { 
            System.out.println("Every fifth characters in the file is : "); 
       int i=0; 
       do { 
           raf.seek(i);  
           d = raf.read(); 
           if(d!=-1) 
           System.out.print((char)d + " "); 
            i=i+5; 
       }while(d!=-1); 

} 
     catch(IOException exc) { 
       System.out.println("I/O Error: " + exc); 
     } 
  } 
}  
 
For execution of this program assume that there exists a file called knr.txt which contains 
alphabets a-z.  
When the above program is executed we get the following output; 
 
 
E:\java>javac Random.java 
 
E:\java>java Random 
Every fifth characters in the file is :  
a f k p u z 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

UNIT-III 22 KNREDDY

JAVA PROGRAMMING



FILE I/O USING CHARACTER STREAMS: 
 To perform character based file I/O we can use FileReader and FileWriter classes. 

Using FileWriter 
 FileWriter creates a Writer that you can use to write to a file. Two of its most commonly used 

constructors are shown here: 
FileWriter(String filePath) throws IOException 
FileWriter(String filePath, boolean append) throws IOException 

 FileWriter is derived from OutputStreamWriter and Writer. Thus it has access to the methods 
defined by those classes. 

 Creation of a FileWriter is not dependent on the file already existing. FileWriter will create 
the file before opening it for output when you create the object. 
 
import java.io.*; 
class KtoD{ 
 public static void main(String[] args){ 
  String str; 
  BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); 
  System.out.println("enter test.stop to quit"); 
  try(FileWriter fw=new FileWriter("test.txt")){ 
   do{ 
    System.out.print(":"); 
    str=br.readLine(); 
    if (str.compareTo("stop")==0)  break; 
    str=str+"\r\n"; 
    fw.write(str); 
   }while(str.compareTo("stop")!=0); 
  } 
  catch(IOException exe){ 
   System.out.println("I/O Error: " +exe); 
  } 
 } 
} 
 

Using a FileReader: 
 
 The FileReader class creates a Reader that you can use to read the contents of a file. A 

commonly used constructors is shown here: 
FileReader(String filePath) throws FileNotFoundEception 

 FileReader is derived from InputStreamReader and Reader. Thus, it has access to the 
methods defined by those classes. 
import java.io.*; 
class DtoS{ 
 public static void main(String[] args){ 
  String str; 
  try(BufferedReader br=new BufferedReader(new FileReader("test.txt"))){ 
   while((str=br.readLine())!=null){ 
    System.out.println(str); 
   } 
  } 
  catch(IOException exe){ 
   System.out.println("I/O Error: " +exe); 
  } 
 } 
} 
 
 
 
 
 
 
 

UNIT-III 23 KNREDDY

JAVA PROGRAMMING



File: 
 File class deals directly with files and file systems. The File class does not specify how 

information is retrieved from or stored in files; it describes the properties of a file itself.  
 A File object is used to obtain or manipulate the information associated with a disk file, such 

as the permissions, time, date, and directory path, and to navigate subdirectory hierarchies. 
File (String path) 
File (String directory path, String filename) 
 
Obtaining a File’s properties: 

 File defines many methods that obtain the standard properties of a File object. 
Method Description 

boolean canRead() Returns true if the file can be read 
boolean canWrite() Returns true if the file can be written 
boolean exists() Returns true if the file exists 
String getAbsolutePath() Returns the absolute path to the file 
String getName() Returns the file’s name 
String getParent() Returns the name of the file’s parent directory, or null if no 

parent exists 
boolean isAbsolute() Returns true if the path is absolute. It returns false if the 

path is relative 
boolean isDirectory() Returns true if the file is directory 
boolean isFile() Returns true if the file is a normal file. It returns false if the 

file is a directory or some other nonfile object. 
boolean isHidden() Returns true if the invoking file is hidden. Returns false 

otherwise 
long length() Returns the length of the file, in bytes. 
 
 
 // Obtain information about a file. 
import java.io.*; 
class FileDemo { 
  public static void main(String[] args) { 
    File myFile = new File("/pack/k.txt"); 
    System.out.println("File Name: " + myFile.getName()); 
    System.out.println("Path: " + myFile.getPath()); 
    System.out.println("Abs Path: " + myFile.getAbsolutePath()); 
    System.out.println("Parent: " + myFile.getParent()); 
    System.out.println(myFile.exists() ? "exists" : "does not exist"); 
    System.out.println(myFile.isHidden() ? "is hidden”:  "is not hidden"); 
    System.out.println(myFile.canWrite() ? "is writeable”: "is not writeable"); 
    System.out.println(myFile.canRead() ? "is readable”: "is not readable"); 
    System.out.println("is " + (myFile.isDirectory() ? "" : "not" + " a directory")); 
    System.out.println(myFile.isFile() ? "is normal file" : "might be a named pipe"); 
    System.out.println(myFile.isAbsolute() ? "is absolute" : "is not absolute"); 
    System.out.println("File size: " + myFile.length() + " Bytes"); 
  } 
} 

Obtaining a Directory Listing: 
 A directory is a file that contains a list of other files and directories. When we create a File 

object that is a directory, the isDirectory() method will return true.  
 The list of the files in the directory can be obtained by calling list() on the object. 

String[] list()  
// Using directories. 
import java.io.*; 
class DirList { 
  public static void main(String[] args) { 
    String dirname = "/java"; 
    File myDir = new File(dirname); 
    if (myDir.isDirectory()) { 
      System.out.println("Directory of " + dirname); 
      String[] s = myDir.list(); 

UNIT-III 24 KNREDDY

JAVA PROGRAMMING



      for (int i=0; i < s.length; i++) { 
        File f = new File(dirname + "/" + s[i]); 
        if (f.isDirectory()) { 
          System.out.println(s[i] + " is a directory"); 
        } else { 
          System.out.println(s[i] + " is a file"); 
        } 
      } 
    } else { 
      System.out.println(dirname + " is not a directory"); 
    } 
  } 
} 
 

The listFiles( )Alternative 
 There is a variation to the list( ) method, called listFiles( ). The signatures for listFiles( ) are 

shown here: 
File[ ] listFiles( ) 
File[ ] listFiles(FilenameFilter FFObj) 
File[ ] listFiles(FileFilter FFObj) 

 These methods return the file list as an array of File objects instead of strings. The first 
method returns all files, and the second returns those files that satisfy the specified 
FilenameFilter. Aside from returning an array of File objects, these two versions of listFiles() 
work like their equivalent list( ) methods. 
The third version of listFiles( ) returns those files with path names that satisfy the specified 
FileFilter. FileFilter defines only a single method, accept( ), which is called once for each file 
in a list. Its general form is given here: 

boolean accept(File path) 
The accept( ) method returns true for files that should be included in the list (that is, those 
that match the path argument) and false for those that should be excluded. 
 

Various File Utility methods: 
 File includes several other utility methods. 

 
Method Description 

boolean delete() Deletes the file specified by the invoking object. returns true if 
the file was deleted and false if the file cannot be removed 

void deleteOnExit() removes the file associated with the invoking object when the 
java virtual machine terminates 

long getFreeSpace() Returns the number of free bytes of storage available on the 
partition associated with the invoking object. 

boolean mkdir() Creates the directory specified by the invoking object. Returns 
true if the directory was created and false if the directory could 
not be created.  

boolean mkdirs() Creates the directory and all required parent directories specified 
by the invoking object. Returns true if the entire path was 
created and false otherwise. 

boolean 
setReadOnly() 

set the file read-only 

boolean setWritible( 
boolean how) 

If how is true, the file is set to writable. If how is false, the file is 
set to read only. Returns true if the status of the file was 
modified and false if the write status cannot be changed. 

 
 
 
 
 
 

UNIT-III 25 KNREDDY

JAVA PROGRAMMING



WRAPPERS 
 Java provides type wrappers, which are classes that encapsulate a primitive type within an 

object. 
 The type wrappers are Double, Float, Long, Integer, Short, Byte, Character, and Boolean. 

These classes offer a wide array of methods that allow you to fully integrate the primitive 
types into Java’s object hierarchy. 
Wrapper Conversion Method 
Double static double parseDouble(string str) throws NumberFormatException 
Float static float parseFloat(String str)throws NumberFormatException 
Long static long parseLong(String str)throws NumberFormatException 
Wrapper Conversion Method 
Integer static int parseInt(String str)throws NumberFormatException 
Short static short parseShort(String str)throws NumberFormatException 
Byte static byte parseByte(String str)throws NumberFormatException 
 
// This program averages a list of numbers entered by the user. 
 
import java.io.*; 
 
class AvgNums { 
  public static void main(String[] args) throws IOException { 
    // create a BufferedReader using System.in 
    BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); 
    String str; 
    int n; 
    double sum = 0.0; 
    double avg, t; 
 
    System.out.print("How many numbers will you enter: "); 
    str = br.readLine(); 
    try { 
      n = Integer.parseInt(str); 
    } 
    catch(NumberFormatException exc) { 
      System.out.println("Invalid format"); 
      n = 0; 
    } 
 
    System.out.println("Enter " + n + " values."); 
    for(int i=0; i < n ; i++) { 
      System.out.print(": "); 
      str = br.readLine(); 
      try { 
        t = Double.parseDouble(str); 
      } catch(NumberFormatException exc) { 
        System.out.println("Invalid format"); 
        t = 0.0; 
      } 
      sum += t; 
    } 
    avg = sum / n; 
    System.out.println("Average is " + avg); 
  } 
} 
 

UNIT-III 26 KNREDDY

JAVA PROGRAMMING




