
UNIT IV 
UNIT IV 
Multithreading: Fundamentals, Thread class, Runnable interface, Creating multiple 
threads, Life cycle of thread, Thread priorities, Synchronization, Thread communication, 
Suspending, Resuming and Stopping threads. 
Applets: Basics, skeleton, Initialization and termination, Repainting, Status window, 
Passing parameters. 
Networking: Basics, Networking classes and interfaces, InetAddress, Inet4Address and 
Inet6Address, TCP/IP Client Sockets, URL, URLConnection, HttpURLConnection, The URI 
class, Cookies, TCP/IP Server sockets, Datagrams. 
 
 
 
 
 
 
 
 
 
 
MULTITHREADING: FUNDAMENTALS 
 
 There are two distinct types of multitasking: process-based and thread-based. 
 A process is, in essence, a program that is executing. Thus, process-based multitasking is the 

feature that allows your computer to run two or more programs concurrently. In process-
based multitasking, a program is the smallest unit of code that can be dispatched by the 
scheduler. 

 In a thread-based multitasking environment, the thread is the smallest unit of dispatchable 
code. This means that a single program can perform two or more tasks simultaneously. 

 Multitasking threads require less overhead than multitasking processes. 
 Multithreading enables to write efficient programs that make maximum use of the processing 

power available in the system. One important way multithreading achieves this is by keeping 
idle time to a minimum. 

 Threads exist in several states. A thread can be running. It can be ready to run as soon as it 
gets CPU time. A running thread can be suspended, which temporarily halts its activity. A 
suspended thread can then be resumed. A thread can be blocked when waiting for a resource. 
At any time, a thread can be terminated, which halts its execution immediately. Once 
terminated, a thread cannot be resumed. 
 

The Thread Class and the Runnable Interface 
 Java’s multithreading system is built upon the Thread class, its methods, and its companion 

interface, Runnable. 
 Thread encapsulates a thread of execution. 
 To create a new thread, the program will either extend Thread or implement the Runnable 

interface. 
 The Thread class defines several methods that help manage threads. 

 
The Main Thread 
 When a Java program starts up, one thread begins running immediately. This is usually 

called the main thread of the program, because it is the one that is executed when program 
begins. The main thread is important for two reasons: 
• It is the thread from which other “child” threads will be spawned. 
• Often, it must be the last thread to finish execution because it performs various shutdown 
actions. 

 Although the main thread is created automatically when the program is started, it can be 
controlled through a Thread object. To do so, we must obtain a reference to it by calling the 
method currentThread( ), which is a public static member of Thread. 
  

 
 
 

UNIT-IV 1 KNREDDY

JAVA PROGRAMMING



CREATING A THREAD 
 We create a thread by instantiating an object of type Thread. Java defines two ways in which 

this can be accomplished: 
• Can implement the Runnable interface. 
• can extend the Thread class, itself. 

Implementing Runnable 
 The easiest way to create a thread is to create a class that implements the Runnable 

interface. Runnable abstracts a unit of executable code. We can construct a thread on any 
object that implements Runnable. 

 To implement Runnable, a class need only implement a single method called run( ), which is 
declared like this: 

public void run( ) 
 Inside run( ), we will define the code that constitutes the new thread. The thread will end 

when run( ) returns. 
 After creating a class that implements Runnable, instantiate an object of type Thread from 

within that class. Thread defines several constructors.  
Thread(Runnable threadOb) 

 In this constructor, threadOb is an instance of a class that implements the Runnable 
interface. This defines where execution of the thread will begin.  

 After the new thread is created, it will not start running until you call its start( ) method, 
which is declared within Thread. In essence, start( ) executes a call to run( ). 

 The start( ) method is shown here: 
void start( ) 

 Here is an example that creates a new thread and starts it running: 
 // Create a thread by implementing Runnable. 
class MyThread implements Runnable { 
 String thrdName; 
  MyThread(String name) { 
  thrdName = name; 
 } 
 // Entry point of thread. 
 public void run() { 
  System.out.println(thrdName + " starting."); 
  try { 
   for(int count=0; count < 10; count++) { 
    Thread.sleep(400); 
    System.out.println("In " + thrdName +", count is " + count); 
   } 
  } 
  catch(InterruptedException exc) { 
   System.out.println(thrdName + " interrupted."); 
  } 
  System.out.println(thrdName + " terminating."); 
 } 
} 
class UseThreads { 
 public static void main(String[] args) { 
  System.out.println("Main thread starting."); 
   
  // First, construct a MyThread object. 
  MyThread mt = new MyThread("Child #1"); 
   
  // Next, construct a thread from that object. 
  Thread newThrd = new Thread(mt); 
  // Finally, start execution of the thread. 
  newThrd.start(); 
   for(int i=0; i < 50; i++) { 
   System.out.print(.); 
   try { 
    Thread.sleep(100); 
   } 

UNIT-IV 2 KNREDDY

JAVA PROGRAMMING



   catch(InterruptedException exc) { 
    System.out.println("Main thread interrupted."); 
   } 
  } 
  System.out.println("Main thread ending."); 
 } 
} 
 
Simple Improvements: 
 It is possible to have a thread begin execution as soon as it is created.  
 It is possible to give the name of thread when it is created. 
 For this use the following version of Thread constructor. 

Thread(Runnable threadOb, String name) 
 Name of the thread can be obtained by calling getName() defined by Thread. 

final String getName()  
 Name of the thread can be set by using setName() 

  final void setName( String threadName)  
 
// Improved MyThread. 
class MyThread implements Runnable { 
 Thread thrd; 
 // Construct a new thread. 
 MyThread(String name) { 
  thrd = new Thread(this, name); 
  thrd.start(); // start the thread 
 } 
 // Begin execution of new thread. 
 public void run() { 
  System.out.println(thrd.getName() + " starting."); 
  try { 
   for(int count=0; count < 10; count++) { 
    Thread.sleep(400); 
    System.out.println("In " + thrd.getName() +", count is " + count); 
   } 
  } 
  catch(InterruptedException exc) { 
   System.out.println(thrd.getName() + " interrupted."); 
  } 
  System.out.println(thrd.getName() + " terminating."); 
 } 
} 
 
class UseThreadsImproved { 
 public static void main(String[] args) { 
  System.out.println("Main thread starting."); 
  MyThread mt = new MyThread("Child #1"); 
  for(int i=0; i < 50; i++) { 
   System.out.print("."); 
   try { 
    Thread.sleep(100); 
   } 
   catch(InterruptedException exc) { 
    System.out.println("Main thread interrupted."); 
   } 
  } 
  System.out.println("Main thread ending."); 
 } 
} 
 
 
 

UNIT-IV 3 KNREDDY

JAVA PROGRAMMING



CREATING MULTIPLE THREADS: 
 It is possible to create many threads as it needs. 
 
// Create multiple threads. 
 
class MyThread implements Runnable { 
 Thread thrd; 
  
 // Construct a new thread. 
 MyThread(String name) { 
  thrd = new Thread(this, name); 
  thrd.start(); // start the thread 
 } 
 
 // Begin execution of new thread. 
 public void run() { 
  System.out.println(thrd.getName() + " starting."); 
 
  try { 
   for(int count=0; count < 10; count++) { 
    Thread.sleep(400); 
    System.out.println("In " + thrd.getName() +", count is " + count); 
   } 
  } 
  catch(InterruptedException exc) { 
   System.out.println(thrd.getName() + " interrupted."); 
  } 
  System.out.println(thrd.getName() + " terminating."); 
 } 
} 
 
class MoreThreads { 
 
 public static void main(String[] args) { 
  System.out.println("Main thread starting."); 
   
  MyThread mt1 = new MyThread("Child #1"); 
  MyThread mt2 = new MyThread("Child #2"); 
  MyThread mt3 = new MyThread("Child #3"); 
   
  for(int i=0; i < 50; i++) { 
   System.out.print("."); 
 
   try { 
    Thread.sleep(100); 
   } 
   catch(InterruptedException exc) { 
    System.out.println("Main thread interrupted."); 
   } 
  } 
 
  System.out.println("Main thread ending."); 
 } 
} 
 
 
 
 
 
 
 

UNIT-IV 4 KNREDDY

JAVA PROGRAMMING



DETERMINING WHEN A THREAD ENDS: 
 Often the main thread is to finish last. This is accomplished by calling sleep( ) within main( ), 

with a long enough delay to ensure that all child threads terminate prior to the main thread. 
 Thread provides two means by which we can determine if a thread has ended. 
 First, we can call isAlive( ) on the thread. Its general form is: 

final boolean isAlive( ) 
 The isAlive( ) method returns true if the thread upon which it is called is still running. It 

returns false otherwise. 
 
// Use isAlive(). 
class MoreThreads { 
   public static void main(String[] args) { 
      System.out.println("Main thread starting."); 
 
      MyThread mt1 = new MyThread("Child #1"); 
      MyThread mt2 = new MyThread("Child #2"); 
      MyThread mt3 = new MyThread("Child #3"); 
 
      do { 
        System.out.print("."); 
        try { 
           Thread.sleep(100); 
        } 
        catch(InterruptedException exc) { 
           System.out.println("Main thread interrupted."); 
        } 
      } while (mt1.thrd.isAlive() ||mt2.thrd.isAlive() ||mt3.thrd.isAlive()); 
 
      System.out.println("Main thread ending."); 
   } 
}  

 The method that will more commonly use to wait for a thread to finish is called join( ), shown 
here: 

final void join( ) throws InterruptedException 
 This method waits until the thread on which it is called terminates. Its name comes from 
 The concept of the calling thread waiting until the specified thread joins it.  

 
// Use join(). 
class JoinThreads { 

public static void main(String[] args) { 
      System.out.println("Main thread starting."); 
 
      MyThread mt1 = new MyThread("Child #1"); 
      MyThread mt2 = new MyThread("Child #2"); 
      MyThread mt3 = new MyThread("Child #3"); 
 
      try { 
        mt1.thrd.join(); 
        System.out.println("Child #1 joined."); 
        mt2.thrd.join(); 
        System.out.println("Child #2 joined."); 
        mt3.thrd.join(); 
        System.out.println("Child #3 joined."); 
      } 
      catch(InterruptedException exc) { 
        System.out.println("Main thread interrupted. "); 
      } 
      System.out.println("Main thread ending."); 
   } 
} 
 

UNIT-IV 5 KNREDDY

JAVA PROGRAMMING



THREAD PRIORITIES:  
 Java assigns to each thread a priority that determines how that thread should be treated with 

respect to the others.  
 Thread priorities are integers that specify the relative priority of one thread to another.  
 A higher priority thread doesn’t run any faster than a lower-priority thread if it is the only 

thread running. Instead, a thread’s priority is used to decide when to switch from one running 
thread to the next. This is called a context switch.  

 The rules that determine when a context switch takes place are simple: 
• A thread can voluntarily relinquish control.  
• A thread can be preempted by a higher-priority thread.  

 We can change a thread’s priority by calling setPriority(), which is a member of a Thread. 
final void setPriority(int level)  

 Here level specifies the new priority setting for the calling thread. 
 3 constants defiend in Thread class: 

o public static int MIN_PRIORITY 
o public static int NORM_PRIORITY 
o public static int MAX_PRIORITY 

 Default priority of a thread is 5 (NORM_PRIORITY). The value of MIN_PRIORITY is 1 and the 
value of MAX_PRIORITY is 10. 

 We can obtain the current priority setting by calling the getPriority() method of Thread. 
final int getPriority()  

SYNCHRONIZATION: 
 When using multiple threads, it is sometimes necessary to coordinate the activities of two or 

more. The process by which this is achieved is called synchronization. 
 Key to synchronization in Java is the concept of the monitor, which controls the access to an 

object. A monitor works by implementing the concept of a lock. 
 When an object is locked by one thread, access to the object by another thread is restricted. 
 Synchronization is supported by the keyword synchronized. 
 
USING SYNCHRONIZED METHODS  
  Synchronization is easy in Java, because all objects have their own implicit monitor 

associated with them. To enter an object’s monitor, just call a method that has been modified 
with the synchronized keyword.  

 When the method is called, the calling thread enters the object’s monitor, which then locks 
the object. 

 While locked no other thread can enter the method on that object. When the thread returns 
from the method, the monitor unlocks the object, allowing it to be used by the next thread. 
 
// Use synchronize to control access. 
class SumArray { 
 private int sum; 
 synchronized int sumArray(int[] nums) { 
  sum = 0; // reset sum 
  for(int i=0; i<nums.length; i++) { 
   sum += nums[i]; 
   System.out.println("Running total for " +Thread.currentThread().getName() +  
                                                   " is " + sum); 
   try { 
    Thread.sleep(10); // allow task-switch 
   }catch(InterruptedException exc) { 
    System.out.println("Thread interrupted."); 
   } 
  } 
  return sum; 

} 
} 
class MyThread implements Runnable { 
 Thread thrd; 
 static SumArray sa = new SumArray(); 
 int[] a; 
 int answer; 

UNIT-IV 6 KNREDDY

JAVA PROGRAMMING



 // Construct a new thread. 
 MyThread(String name, int[] nums) { 
  thrd = new Thread(this, name); 
  a = nums; 
  thrd.start(); // start the thread 
 } 
 // Begin execution of new thread. 
 public void run() { 
  int sum; 
   
  System.out.println(thrd.getName() + " starting."); 
   
  answer = sa.sumArray(a); 
  System.out.println("Sum for " + thrd.getName() +" is " + answer); 
   
  System.out.println(thrd.getName() + " terminating."); 
 } 
} 
class Sync { 
 public static void main(String[] args) { 
  int[] a = {1, 2, 3, 4, 5}; 
   
  MyThread mt1 = new MyThread("Child #1", a); 
  MyThread mt2 = new MyThread("Child #2", a); 
   
  try { 
   mt1.thrd.join(); 
   mt2.thrd.join(); 
  } 
  catch(InterruptedException exc) { 
   System.out.println("Main thread interrupted."); 
  } 
 } 
}  
 
O/P: 
Child #1 starting. 
Child #2 starting. 
Running total for Child #1 is 1 
Running total for Child #1 is 3 
Running total for Child #1 is 6 
Running total for Child #1 is 10 
Running total for Child #1 is 15 
Running total for Child #2 is 1 
Sum for Child #1 is 15 
Child #1 terminating. 
Running total for Child #2 is 3 
Running total for Child #2 is 6 
Running total for Child #2 is 10 
Running total for Child #2 is 15 
Sum for Child #2 is 15 
Child #2 terminating. 
 
If we remove synchronized from the declaration of sumArray(), then it is no longer 
synchronized and any number of threads may execute it concurrently.  
Output is as follows when method is not synchronized. 
 
Child #1 starting. 
Child #2 starting. 
Running total for Child #2 is 1 
Running total for Child #1 is 1 

UNIT-IV 7 KNREDDY

JAVA PROGRAMMING



Running total for Child #1 is 3 
Running total for Child #2 is 5 
Running total for Child #1 is 8 
Running total for Child #2 is 11 
Running total for Child #2 is 15 
Running total for Child #1 is 19 
Running total for Child #1 is 29 
Running total for Child #2 is 29 
Sum for Child #2 is 29 
Sum for Child #1 is 29 
Child #2 terminating. 
Child #1 terminating. 
 

THE synchronized STATEMENT 
 Creating synchronized methods within classes that you create is an easy and effective means 

of achieving synchronization, it will not work in all cases. 
 It is not possible to add synchronized to the appropriate methods within class that was 

created by a third party, and do not have access to the source code.  
 The solution to this problem is quite easy: Simply put calls to the methods defined by this 

class inside a synchronized block. 
 This is the general form of the synchronized statement: 

synchronized(objectref) { 
// statements to be synchronized 

} 
  Here, objectref is a reference to the object being synchronized. A synchronized block ensures 

that a call to a method that is a member of object occurs only after the current thread has 
successfully entered object’s monitor. 
class SumArray { 
 private int sum; 
 int sumArray(int[] nums) { 
  sum = 0; // reset sum 
  for(int i=0; i<nums.length; i++) { 
   sum += nums[i]; 
   System.out.println("Running total for " +Thread.currentThread().getName() +  
                                                   " is " + sum); 
   try { 
    Thread.sleep(10); // allow task-switch 
   }catch(InterruptedException exc) { 
    System.out.println("Thread interrupted."); 
   } 
  } 
  return sum; 

} 
} 
 
class MyThread implements Runnable { 
 Thread thrd; 
 static SumArray sa = new SumArray(); 
 int[] a; 
 int answer; 
 // Construct a new thread. 
 MyThread(String name, int[] nums) { 
  thrd = new Thread(this, name); 
  a = nums; 
  thrd.start(); // start the thread 
 } 
 
 // Begin execution of new thread. 
 public void run() { 
   
  System.out.println(thrd.getName() + " starting."); 

UNIT-IV 8 KNREDDY

JAVA PROGRAMMING



    // synchronize calls to sumArray() 
      synchronized(sa) { 
        answer = sa.sumArray(a); 
      } 
  System.out.println("Sum for " + thrd.getName() +" is " + answer); 
   
  System.out.println(thrd.getName() + " terminating."); 
 } 
} 
 
class Sync { 
 public static void main(String[] args) { 
  int[] a = {1, 2, 3, 4, 5}; 
   
  MyThread mt1 = new MyThread("Child #1", a); 
  MyThread mt2 = new MyThread("Child #2", a); 
   
  try { 
   mt1.thrd.join(); 
   mt2.thrd.join(); 
  } 
  catch(InterruptedException exc) { 
   System.out.println("Main thread interrupted."); 
  } 
 } 
}  

 
 
 
THREAD COMMUNICATION USING notify(),wait() and notifyAll() 
 Consider the following situation. One thread is producing some data and another is 

consuming it. To make the problem more interesting, suppose that the producer has to wait 
until the consumer is finished before it generates more data. In a polling system, the 
consumer would waste many CPU cycles while it waited for the producer to produce. Once the 
producer was finished, it would start polling, wasting more CPU cycles waiting for the 
consumer to finish, and so on. Clearly, this situation is undesirable. 

 Java supports interthread communication mechanism with the wait( ), notify( ), and 
notifyAll( ) methods.  

 These methods are implemented as final methods in Object.  
 All three methods can be called onlyfrom within a synchronized context.  
 The rules for using these methods are actually quite simple: 

• wait( ) tells the calling thread to give up the monitor and go to sleep until some other thread 
enters the same monitor and calls notify( ). 
• notify( ) wakes up a thread that called wait( ) on the same object. 
• notifyAll( ) wakes up all the threads that called wait( ) on the same object. One of the 
threads will be granted access. 
 

 These methods are declared within Object, as shown here: 
final void wait( ) throws InterruptedException 
final void notify( ) 
final void notify All( ) 

 Additional forms of wait( ) exist that allow you to specify a period of time to wait.  
  Consider the following sample program that implements a simple form of the producer/ 

consumer problem. It consists of four classes: Q, the queue that you’re trying to synchronize; 
Producer, the threaded object that is producing queue entries; Consumer, the threaded 
object that is consuming queue entries; and PCFixed, the tiny class that creates the single Q, 
Producer, and Consumer. 
 
 
 
 

UNIT-IV 9 KNREDDY

JAVA PROGRAMMING



// A correct implementation of a producer and consumer. 
class Q { 
 int n; 
 boolean valueSet = false; 
 synchronized int get() { 
  if(!valueSet) 
   try { 
    wait(); 
   } catch(InterruptedException e) { 
    System.out.println("InterruptedException caught"); 
   } 
   System.out.println("Got: " + n); 
   valueSet = false; 
   notify(); 
   return n; 
  } 
 synchronized void put(int n) { 
  if(valueSet) 
   try { 
    wait(); 
   } catch(InterruptedException e) { 
    System.out.println("InterruptedException caught"); 
   } 
   this.n = n; 
   valueSet = true; 
   System.out.println("Put: " + n); 
   notify(); 
 } 
} 
class Producer implements Runnable { 
 Q q; 
 Producer(Q q) { 
  this.q = q; 
  new Thread(this, "Producer").start(); 
 } 
 public void run() { 
  int i = 0; 
  while(true) { 
   q.put(i++); 
  } 
 } 
} 
class Consumer implements Runnable { 
 Q q; 
 Consumer(Q q) { 
  this.q = q; 
  new Thread(this, "Consumer").start(); 
 } 
 public void run() { 
  while(true) { 
   q.get(); 
  } 
 } 
} 
class PCFixed { 
 public static void main(String args[]) { 
  Q q = new Q(); 
  new Producer(q); 
  new Consumer(q); 
  System.out.println("Press Control-C to stop."); 
 }        }  

UNIT-IV 10 KNREDDY

JAVA PROGRAMMING



O/P: 
Put: 0 
Press Control-C to stop. 
Got: 0 
Put: 1 
Got: 1 
Put: 2 
Got: 2 
Put: 3 
Got: 3 
Put: 4 
Got: 4 
Put: 5 
Got: 5 
Put: 6 
Got: 6 
Put: 7 
Got: 7 
Put: 8 
Got: 8 
Put: 9 
Got: 9 
Put: 10 
Got: 10  

  
  
  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

UNIT-IV 11 KNREDDY

JAVA PROGRAMMING



Suspending, Resuming, and Stopping Threads  
 Sometimes, suspending execution of a thread is useful. 
 The mechanisms to suspend, stop, and resume threads differ between early versions of Java, 

such as Java 1.0, and modern versions, beginning with Java 2. 
 Prior to Java 2, a program used suspend ( ), resume ( ) and stop () which are methods 

defined by Thread, to pause, restart and stop the execution of a thread. 
 The suspend( ) method of the Thread class was deprecated by Java 2. This was done because 

suspend( ) can sometimes cause serious system failures. Assume that a thread has obtained 
locks on critical data structures. If that thread is suspended at that point, those locks are not 
relinquished. Other threads that may be waiting for those resources can be deadlocked. 

 The resume( ) method is also deprecated. It does not cause problems, but cannot be used 
without the suspend( ) method as its counterpart. 

 The stop( ) method of the Thread class, too, was deprecated by Java 2. This was done 
because this method can sometimes cause serious system failures. Assume that a thread is 
writing to a critically important data structure and has completed only part of its changes. If 
that thread is stopped at that point, that data structure might be left in a corrupted state. The 
trouble is that stop( ) causes any lock the calling thread holds to be released. Thus, the 
corrupted data might be used by another thread that is waiting on the same lock. 

 In later versions of Java, a thread must be designed so that the run( ) method periodically 
checks to determine whether that thread should suspend, resume, or stop its own execution.  

 Typically, this is accomplished by establishing a flag variable that indicates the execution 
state of the thread. As long as this flag is set to “running,” the run( ) method must continue to 
let the thread execute. If this variable is set to “suspend,” the thread must pause. If it is set to 
“stop,” the thread must terminate. 

 
 

// Suspending, resuming, and stopping a thread. 
 
class MyThread implements Runnable { 
 Thread thrd; 
 boolean suspended; 
 boolean stopped; 
 MyThread(String name) { 
  thrd = new Thread(this, name); 
  suspended = false; 
  stopped = false; 
  thrd.start(); 
 }  
 // This is the entry point for thread. 
 public void run() { 
  System.out.println(thrd.getName() + " starting."); 
  try { 
   for(int i = 1; i < 1000; i++) { 
    System.out.print(i + " "); 
    if((i%10)==0) { 
     System.out.println(); 
     Thread.sleep(250); 
    } 
    // Use synchronized block to check suspended and stopped. 
    synchronized(this) { 
     while(suspended) { 
      wait(); 
     } 
     if(stopped) break; 
    } 
   } 
  }  
  catch (InterruptedException exc) { 
   System.out.println(thrd.getName() + " interrupted."); 
  } 
  System.out.println(thrd.getName() + " exiting."); 

UNIT-IV 12 KNREDDY

JAVA PROGRAMMING



 } 
 // Stop the thread. 
 synchronized void myStop() { 
  stopped = true; 
   
  // The following ensures that a suspended thread can be  stopped. 
  suspended = false; 
  notify(); 
 } 
  
 // Suspend the thread. 
 synchronized void mySuspend() { 
  suspended = true; 
 } 
  
 // Resume the thread. 
 synchronized void myResume() { 
  suspended = false; 
  notify(); 
 } 
} 
class Suspend { 
 public static void main(String[] args) { 
  MyThread ob1 = new MyThread("My Thread"); 
   try { 
   Thread.sleep(1000); // let ob1 thread start executing 
    
   ob1.mySuspend(); 
   System.out.println("Suspending thread."); 
   Thread.sleep(1000); 
    
   ob1.myResume(); 
   System.out.println("Resuming thread."); 
   Thread.sleep(1000); 
    
   ob1.mySuspend(); 
   System.out.println("Suspending thread."); 
   Thread.sleep(1000); 
    
   ob1.myResume(); 
   System.out.println("Resuming thread."); 
   Thread.sleep(1000); 
    
   ob1.mySuspend(); 
   System.out.println("Stopping thread."); 
   ob1.myStop(); 
  }  
  catch (InterruptedException e) { 
   System.out.println("Main thread Interrupted"); 
  } 
  // wait for thread to finish 
  try { 
   ob1.thrd.join(); 
  }  
  catch (InterruptedException e) { 
   System.out.println("Main thread Interrupted"); 
  } 
   
  System.out.println("Main thread exiting."); 
 } 
} 

UNIT-IV 13 KNREDDY

JAVA PROGRAMMING



OUTPUT: 
My Thread starting. 
1 2 3 4 5 6 7 8 9 10 
11 12 13 14 15 16 17 18 19 20 
21 22 23 24 25 26 27 28 29 30 
31 32 33 34 35 36 37 38 39 40 
Suspending thread. 
Resuming thread. 
41 42 43 44 45 46 47 48 49 50 
51 52 53 54 55 56 57 58 59 60 
61 62 63 64 65 66 67 68 69 70 
71 72 73 74 75 76 77 78 79 80 
Suspending thread. 
81 Resuming thread. 
82 83 84 85 86 87 88 89 90 
91 92 93 94 95 96 97 98 99 100 
101 102 103 104 105 106 107 108 109 110 
111 112 113 114 115 116 117 118 119 120 
Stopping thread. 
My Thread exiting. 
Main thread exiting. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

UNIT-IV 14 KNREDDY

JAVA PROGRAMMING



APPLETS 
 Applets are small applications that are accessed on an Internet server, transported over the 

Internet, automatically installed, and run as part of a web document. 
 There are two general varieties of applets: those based solely on the Abstract Window Toolkit 

(AWT) and those based on Swings. Both AWT and Swing support creation of Graphical User 
Interface (GUI). 

 Let examine a simple applet: 
// A minimal AWT-based applet. 
import java.awt.*; 
import java.applet.*; 
public class SimpleApplet extends Applet { 
   public void paint(Graphics g) { 
      g.drawString("Java makes applets easy.", 20, 20); 
   } 
}  

 This applet begins with two import statements. 
 The first imports the Abstract Window Toolkit (AWT) classes. Applets interact with the user 

(either directly or indirectly) through the AWT, not through the console-based I/O classes. The 
AWT contains support for a window-based, graphical user interface.  

 The second import statement imports the applet package, which contains the class Applet. 
Every applet that you create must be a subclass (either directly or indirectly) of Applet.  

 The next line in the program declares the class SimpleApplet. This class must be declared as 
public, because it will be accessed by code that is outside the program. 

 Inside SimpleApplet, paint( ) is declared. This method is defined by the AWT and must be 
overridden by the applet. paint( ) is called each time that the applet must redisplay its 
output. 

 The paint( ) method has one parameter of type Graphics. This parameter contains the 
graphics context, which describes the graphics environment in which the applet is running. 
This context is used whenever output to the applet is required. 

 Inside paint( ) is a call to drawString( ), which is a member of the Graphics class. This 
method outputs a string beginning at the specified X,Y location. It has the following general 
form:  void drawString(String message, int x, int y)  

 Here, message is the string to be output beginning at x,y. In a Java window, the upperleft 
corner is location 0, 0.  

 The applet does not have a main( ) method. 
 An applet begins execution when the name of its class is passed to an applet viewer or to a 

network browser.  
 There are two ways in which you can run an applet: 

• Executing the applet within a Java-compatible web browser. 
• Using an applet viewer, such as the standard tool, appletviewer. An applet viewer executes 
your applet in a window. This is generally the fastest and easiest way to test your applet. 

 To execute SimpleApplet with an applet viewer: 
1. Edit a Java source file.   
2. Compile your program. 
3. Execute the applet viewer, specifying the name of your applet’s source file.  
To execute the applet by appletviewer tool, create an applet that contains applet tag in 
comment and compile it. After that run it by: appletviewer SimpleApplet.java. Now 
Html file is not required but it is for testing purpose only. 

 The SimpleApplet source file look like this:  
import java.awt.*; 
import java.applet.*; 
/*  
<applet code=”SimpleApplet” width=200 height=60> 
</applet>      
*/ 
public class SimpleApplet extends Applet { 
   public void paint(Graphics g) { 
      g.drawString("Java makes applets easy.", 20, 20); 
   } 
}  

 

UNIT-IV 15 KNREDDY

JAVA PROGRAMMING



 The window produced by SimpleApplet, as displayed by the applet viewer, is: 
 

 
 
 
A COMPLETTE APPLET SKELETON 
 Most trivial applets override a set of methods that provide the basic mechanism by which the 

browser or applet viewer interfaces to the applet and controls its execution. 
 These lifecycle methods are init(), start(), stop() and destroy() and they are defined by 

Applet. 
 A fifth method, paint() is commonly override by AWT-based applets even though it is not a 

lifecycle method. 
 These four lifecycle methods plus paint() can be assembled into the skeleton as shown below: 

 
 // An AWT-based Applet skeleton. 
import java.awt.*; 
import java.applet.*; 
/* 
<applet code="AppletSkel" width=300 height=100> 
</applet> 
*/ 
 
public class AppletSkel extends Applet { 
    // Called first. 
    public void init() { 
      // initialization 
    } 
 
    // Called second, after init(). Also called whenever the applet is restarted.  
    public void start() { 
       // start or resume execution 
    } 
 
    // Called when the applet is stopped. 
    public void stop() { 
       // suspends execution 
    } 
 
    //Called when applet is terminated. This is the last method executed.  
    public void destroy() { 
       // perform shutdown activities 
    } 
 
    // Called when an AWT-based applet's window must be restored. 
    public void paint(Graphics g) { 
       // redisplay contents of window 
    } 
} 
 
 

UNIT-IV 16 KNREDDY

JAVA PROGRAMMING



APPLET INITITALIZATION AND TERMINATION: 
 When an applet begins the following methods are called in this sequence: 

1. init() 
2. start() 
3. paint() 

 When applet is terminated the following sequence of method calls takes place 
1. stop() 
2. destroy() 

 The init() method is the first method to be called. In init() the applet will initialize variables 
and perform any other startup activities 

 The start() method is called after init(). It is also called to restart an applet after it has been 
stopped. start() might be called more than once during the life cycle of an applet. 

 The paint() method is called each time an AWT based applet’s output must be redrawn. 
 When the page containing the applet is left, the stop() is called. stop() is used to suspend any 

child threads created by the applet and to perform any other activities required to put the 
applet in a safe, idle state. 

 The destroy() method is called when the applet is no longer needed. It is used to perform any 
shutdown operations required of the applet 
 

REQUESTING REPAINT:  
 An AWT- based applet writes to its window only when its paint() method is called by the run-

time system. 
 Whenever an applet needs to update the information displayed in its window, it simply calls 

repaint() 
 The repaint() method is defined by the AWT’s Component class and inherited by Applet. It 

causes the run-time system to execute a call to the applet’s paint() method. 
 The simplest version of repaint() is : 

void repaint()  
 
/*   A simple banner applet. 

This applet creates a thread that scrolls the message contained in msg right to left across 
the applet's window.   */ 

import java.awt.*; 
import java.applet.*; 
public class Banner extends Applet implements Runnable { 
   String msg = " Java Rules the Web "; 
   Thread t; 
   boolean stopFlag; 
   // Initialize t to null. 
   public void init() { 
      t = null; 
   } 
   // Start thread when the applet is needed. 
   public void start() { 
      t = new Thread(this); 
      stopFlag = false; 
      t.start(); 
   } 
   // Entry point for the thread that runs the banner. 
   public void run() { 
      // Request a repaint every quarter second. 
      for( ; ; ) { 
         try { 
            repaint(); 
            Thread.sleep(250); 
            if(stopFlag) break; 
         } catch(InterruptedException exc) { 
    System.out.println("thread interrupted"); 
   } 
      } 
   } 

UNIT-IV 17 KNREDDY

JAVA PROGRAMMING



   // Pause the banner. 
   public void stop() { 
      stopFlag = true; 
      t = null; 
  } 
 
   // Display the banner. 
   public void paint(Graphics g) { 
      char ch; 
     ch = msg.charAt(0); 
      msg = msg.substring(1, msg.length()); 
      msg += ch; 
      g.drawString(msg, 50, 30); 
   } 
}   
 

USING THE STATUS WINDOW  
 In addition to displaying information in its window, an applet can also output a message to 

the status window of the browser or applet viewer on which it is running. 
 To do so, call showStatus(), which is defined by Applet. The general form is: 

void showStatus(String msg)  
 Here msg is the string to be displayed 
 The status window is a good place to give the user feedback about what is occurring in the 

applet, suggest options, or possibly report some types of errors. 
 
//Using the Status Window 
import java.awt.*; 
import java.applet.*; 
/*   <applet code="SimpleApplet.class" width=200 height=60>  </applet>  */ 
public class ShowStatus extends Applet { 
   public void paint(Graphics g) { 
      g.drawString("Java makes applets easy.", 200, 60); 
      showStatus("this is java applet"); 
   } 
}  
  

PASSING PARAMETERS TO APPLETS  
 Parameters can be passed to an applet. Parameter specifies some setting or attribute 

associated with the applet. 
 To pass a parameter to an applet, use PARAM attribute of the APPLET tag, specifying the 

paramerer’s name and value. To retrieve a parameter, use the getParameter() method,defined 
by Apple.Its general form is: 

String getParameter( String  paramName) 
 

// Pass a parameter to an applet. 
import java.awt.*; 
import java.applet.*; 
/*   <applet code="Param" width=300 height=80> 
<param name=author value="knreddy"> 
<param name=purpose value="Demonstrate Parameters"> 
<param name=version value=2> 
</applet>      */ 
public class Param extends Applet { 
   String author; 
   String purpose; 
   int ver; 
  public void start() { 
      String temp; 
      author = getParameter("author"); 
     if(author == null) author = "not found"; 
      purpose = getParameter("purpose"); 

UNIT-IV 18 KNREDDY

JAVA PROGRAMMING



      if(purpose == null) purpose = "not found"; 
      temp = getParameter("version"); 
      try { 
        if(temp != null) 
           ver = Integer.parseInt(temp); 
        else 
           ver = 0; 
      } catch(NumberFormatException exc) { 
          ver = -1; // error code 
      } 
  } 
   public void paint(Graphics g) { 
      g.drawString("Purpose: " + purpose, 10, 20); 
      g.drawString("By: " + author, 10, 40); 
      g.drawString("Version: " + ver, 10, 60); 
   } 
} 
 
 

 The volatile modifier tells the compiler that the variable modified by volatile can be changed 
unexpectedly by other parts of your program.  

 When an instance variable is declared as transient, then its value need not persist when an 
object is stored. 

 Sometimes, knowing the type of an object during run time is useful. Java provides the run-
time operator instanceof: 

 The instanceof operator has this general form: 
objref instanceof type 

 Here, objref is a reference to an instance of a class, and type is a class type. If objref is of the 
specified type or can be cast into the specified type, then the instanceof operator evaluates to 
true. Otherwise, its result is false. 

 By modifying a class, a method, or interface with strictfp, you ensure that floating-point 
calculations (and thus all truncations) take place precisely as they did in earlier versions of 
Java. When a class is modified by strictfp, all the methods in the class are also modified by 
strictfp automatically. 

 Java provides the native keyword, which is used to declare native code methods. Once 
declared, these methods can be called from inside your Java program just as you call any 
other Java method. 

 assert is used during program development to create an assertion, which is a condition that 
should be true during the execution of the program. 

 The assert keyword has two forms. The first is shown here: 
assert condition; 

 Here, condition is an expression that must evaluate to a Boolean result. If the result is true, 
then the assertion is true and no other action takes place. If the condition is false, then the 
assertion fails and a default AssertionError object is thrown. 

 The second form of assert is shown here: 
assert condition: expr; 

 In this version, expr is a value that is passed to the AssertionError constructor. This value is 
converted to its string format and displayed if an assertion fails. 

 

 

 

 

UNIT-IV 19 KNREDDY

JAVA PROGRAMMING



NETWORKING BASICS 
 The core of Java’s networking support is the concept of a socket. A socket identifies an 

endpoint in a network. 
 Sockets are at the foundation of modern networking because a socket allows a single 

computer to serve many different clients at once, as well as to serve many different types of 
information. This is accomplished through the use of a port, which is a numbered socket on a 
particular machine. 

 A server process is said to “listen” to a port until a client connects to it. A server is allowed to 
accept multiple clients connected to the same port number, although each session is unique. 

 Socket communication takes place via a protocol. Internet Protocol (IP) is a low-level routing 
protocol that breaks data into small packets and sends them to an address across a network, 
which does not guarantee to deliver said packets to the destination. 

 Transmission Control Protocol (TCP) is a higher-level protocol that manages to robustly string 
together these packets, sorting and retransmitting them as necessary to reliably transmit 
data.  

 A third protocol, User Datagram Protocol (UDP), sits next to TCP and can be used directly to 
support fast, connectionless, unreliable transport of packets. 

 A key component of the Internet is the address. Every computer on the Internet has one. An 
Internet address is a number that uniquely identifies each computer on the Net. Originally, all 
Internet addresses consisted of 32-bit values, organized as four 8-bit values. This address 
type was specified by IPv4 (Internet Protocol, version 4). 

 IPv6 uses a 128-bit value to represent an address, organized into eight 16-bit chunks. 
 The name of an Internet address, called its domain name, describes a machine’s location in a 

name space. 
 For example, www.SREC.com is in the COM top-level domain; it is called SREC, and www 

identifies the server for web requests. 
 An Internet domain name is mapped to an IP address by the Domain Naming Service (DNS). 

This enables users to work with domain names, but the Internet operates on IP addresses.  
 
THE NETWORKING CLASSES AND INTERFACES  
 Java supports both the TCP and UDP protocol families. TCP is used for reliable stream-based 

I/O across the network. UDP supports a simpler, hence faster, point-to-point datagram-
oriented model.  

 The classes contained in the java.net package are shown here: 
 

 

 
 

 The java.net package’s interfaces are: 
 

 
  

UNIT-IV 20 KNREDDY

JAVA PROGRAMMING



InetAddress class 
 The InetAddress class is used to encapsulate both the numerical IP address and the domain 

name for that address. The InetAddress class hides the number inside. InetAddress can 
handle both IPv4 and IPv6 addresses.  

 The InetAddress class has no visible constructors. To create an InetAddress object, use one 
of its static methods. 
static InetAddress getLocalHost( )   throws UnknownHostException 
static InetAddress getByName(String hostName)  throws UnknownHostException 

 The getLocalHost( ) method simply returns the InetAddress object that represents the local 
host. The getByName( ) method returns an InetAddress for a host name passed to it. If these 
methods are unable to resolve the host name, they throw an UnknownHostException. 

 There are several methods that can be called on an instance of InetAddress.  
String getHostAddress()  
String getHostName()  

 The getHostAddress() method returns a string that lists the host IP address using its 
numeric form. The getHostName() address returns the name that represents the host 
address. 
// Demonstrate InetAddress. 
 
import java.net.*; 
 
class InetAddressDemo { 
  public static void main(String[] args) { 
 
    try { 
      InetAddress address = InetAddress.getByName("www.mcgraw-hill.com"); 
      System.out.println("Host name: " + address.getHostName()); 
      System.out.println("Address: " + address.getHostAddress()); 
 
      System.out.println(); 
 
      address = InetAddress.getByName("www.knreddycse.weebly.com"); 
      System.out.println("Host name: " + address.getHostName()); 
      System.out.println("Address: " + address.getHostAddress()); 
 
      System.out.println(); 
 
      address = InetAddress.getByName("www.srec.com"); 
      System.out.println("Host name: " + address.getHostName()); 
      System.out.println("Address: " + address.getHostAddress()); 
    }  
    catch (UnknownHostException exc) { 
      System.out.println(exc); 
    } 
  } 
} 
 
OUTPUT: 
Host name: www.mcgraw-hill.com 
Address: 184.26.168.92 
 
Host name: www.knreddycse.weebly.com 
Address: 199.34.228.53 
 
Host name: www.srec.com 
Address: 184.168.221.59 
 
 
 
 

UNIT-IV 21 KNREDDY

JAVA PROGRAMMING



Inet4Address and Inet6Address 
 Beginning with version 1.4, Java has included support for IPv6 addresses. Because of this, 

two subclasses of InetAddress were created: Inet4Address and Inet6Address. Inet4Address 
represents a traditional-style IPv4 address. Inet6Address encapsulates a new-style IPv6 
address. 
 

 TCP/IP Client Sockets 
 TCP/IP sockets are used to implement reliable, bidirectional, persistent, point-to-point, 

stream-based connections between hosts on the Internet. A socket can be used to connect 
Java’s I/O system to other programs that may reside either on the local machine or on any 
other machine on the Internet. 

 There are two kinds of TCP sockets in Java. One is for servers, and the other is for clients. 
 The ServerSocket class is designed to be a “listener,” which waits for clients to connect 

before doing anything. Thus, ServerSocket is for servers.  
 The Socket class is for clients. It is designed to connect to server sockets and initiate protocol 

exchanges. 
 The creation of a Socket object implicitly establishes a connection between the client and 

server. 
 Socket defines several constructors: 

Socket(String hostname, int port) throws UnknownHostException, IOException    
 Socket defines several instance methods. 

InetAddress getInetAddress() Returns InetAddress associated with Socket object. It returns 
null if Scoket is not connected 

int getPort() Returns the port number on the server. Otherwise it returns 
0 

int getLocalPort() Returns local port number .It returns -1 if Socket is not 
bound to a port 

 
 We can gain access to the input and output streams associated with a Socket by use of the 

getInputStream( ) and getOuptutStream( ) methods 
InputStream getInputStream() 
throws IOException 

Returns the input stream associated with the 
invoking socket. 

OutputStream getOutputStream() 
throws IOException 

Returns the output stream associated with 
the invoking socket. 

  
 Several other methods are available, including connect( ), which allows you to specify a new 

connection; isConnected( ), which returns true if the socket is connected to a server; 
isBound( ), which returns true if the socket is bound to an address; and isClosed( ), which 
returns true if the socket is closed. To close a socket, call close( ). 

 Closing a socket also closes the I/O streams associated with the socket. Beginning with     
JDK 7, Socket also implements AutoCloseable, which means that you can use a try       
with-resources block to manage a socket. 
 
// Demonstrate Sockets. 
import java.net.*; 
import java.io.*; 
 
class SocketDemo { 
  public static void main(String[] args) { 
    int ch; 
    Socket socket = null; 
 
    try { 
      // Create a socket connected to whois.internic.net, port 43. 
      socket = new Socket("whois.internic.net", 43); 
 
      // Obtain input and output streams. 
      InputStream in = socket.getInputStream(); 
      OutputStream out = socket.getOutputStream(); 
 

UNIT-IV 22 KNREDDY

JAVA PROGRAMMING



      // Construct a request string. 
      String str = (args.length == 0 ? "mcgraw-hill.com" : 
                                      args[0]) + "\n"; 
      // Convert to bytes. 
      byte[] buf = str.getBytes(); 
 
      // Send request. 
      out.write(buf); 
 
      // Read and display response. 
      while ((ch = in.read()) != -1) { 
        System.out.print((char) ch); 
      } 
    }  
    catch(IOException exc) { 
      System.out.println(exc); 
    }  
    finally { 
      try { 
        if(socket != null) socket.close(); 
      } catch(IOException exc) { 
        System.out.println("Error closing socket: " + exc); 
      } 
    } 
  } 
}  
  

// Use automatic resource management to close a socket. 
import java.net.*; 
import java.io.*; 
class SocketDemo { 
    public static void main(String[] args) { 
      int ch; 
 
      // Create a socket connected to internic.net, port 43. Manage this 
      // socket with a try-with-resources block. 
      try ( Socket socket = new Socket("whois.internic.net", 43) ) { 
 
        // Obtain input and output streams. 
        InputStream in = socket.getInputStream(); 
        OutputStream out = socket.getOutputStream(); 
 
        // Construct a request string. 
        String str = (args.length == 0 ? "mcgraw-hill.com" : 
                                          args[0]) + "\n"; 
        // Convert to bytes. 
        byte[] buf = str.getBytes(); 
 
        // Send request. 
        out.write(buf); 
 
        // Read and display response. 
        while ((ch = in.read()) != -1) { 
          System.out.print((char) ch); 
        } 
      } catch(IOException exc) { 
        System.out.println(exc); 
      } 
      // The socket is now closed. 
    } 
} 

UNIT-IV 23 KNREDDY

JAVA PROGRAMMING



THE URL CLASS 
 The URL stands foe Uniform Resource Locator. 
 The URL provides a way to uniquely identify or address information on the Internet. 
 Java provides support for URLs with the URL class. 
 All URLs share the same basic format, although some variation is allowed.  
 Here are two examples:  

http://www.mhhe.com/ and http://www. mhhe.com:80/index.htm.   
 A URL specification is based on four components. The first is the protocol to use, separated 

from the rest of the locator by a colon (:). Common protocols are HTTP, FTP; 
 The second component is the host name or IP address of the host to use; this is delimited on 

the left by double slashes (//) and on the right by a slash (/) or optionally a colon (:).  
 The third component, the port number, is an optional parameter, delimited on the left from 

the host name by a colon (:) and on the right by a slash (/). (It defaults to port 80, the 
predefined HTTP port; thus, “:80” is redundant.)  

 The fourth part is the actual file path. Most HTTP servers will append a file named 
index.html or index.htm to URLs that refer directly to a directory resource. Thus, 
http://www.mhhe.com/ is the same as http://www.mhee.com/index.htm. 

 Java’s URL class has several constructors; each can throw a MalformedURLException. 
URL(String urlSpecifier) throws MalformedURLException  
Here, urlSpecifier is a string that specifies a complete URL. 

 The next two forms of the constructor allow you to break up the URL into its component 
parts: 
URL(String protocolName, String hostName, int port, String path) 
throws MalformedURLException 
URL(String protocolName, String hostName, String path) 
throws MalformedURLException 

 There are methods defined by URL that let to obtain the individual components of a URL. 
They are: 
String getProtocol() 
String getHost() 
String getFile()  
int getPort() 
 
// Demonstrate URL. 
import java.net.*; 
class URLDemo { 
  public static void main(String[] args) { 
 
    try { 
      URL url = new URL("http://www.knreddycse.weebly.com:80/index.html"); 
 
      System.out.println("Protocol: " + url.getProtocol()); 
      System.out.println("Port: " + url.getPort()); 
 
      System.out.println("Host: " + url.getHost()); 
      System.out.println("File: " + url.getFile()); 
    }  
    catch (MalformedURLException exc) { 
      System.out.println("Invalid URL: " + exc); 
    } 
  } 
} 
 
 OUTPUT: 
Protocol: http 
Port: 80 
Host: www.knreddycse.weebly.com 
File: /index.html  

UNIT-IV 24 KNREDDY

JAVA PROGRAMMING



URLConnection class 
 URLConnection is a general-purpose class for accessing the attributes of a remote resource.  
 These attributes are exposed by the HTTP protocol specification and, as such, only make 

sense for URL objects that are using the HTTP protocol. 
 URLConnection defines several methods. Here is a sampling:  

// Demonstrate URLConnection. 
import java.net.*; 
import java.io.*; 
import java.util.*; 
class UCDemo 
{ 
  public static void main(String[] args) { 
    InputStream in = null; 
    URLConnection connection = null; 
    try { 
      URL url = new URL("http://www.mcgraw-hill.com"); 
      connection = url.openConnection(); 
      // get date 
      long d = connection.getDate(); 
      if(d==0) 
        System.out.println("No date information."); 

Method Description 
int getContentLength() Returns the size in bytes of the content 

associated with the resource. If the length is 
unavailable,-1 is returned. 

long getContentLengthLong() Returns the size in bytes of the content 
associated with the resource. If the length is 
unavailable,-1 is returned.(added by JDK7) 

String getContentType() Returns the type of content found in the 
resource. Returns null if the content type is not 
available. 

long getDate() Returns the time and date of the response 
represented in terms of mill seconds since 
January 1, 1970 GMT. Zero is returned if the 
time and date are not available. 

long getExpiration() Returns the expiration time and date of the 
response represented in terms of mill seconds 
since January 1, 1970 GMT. Zero is returned if 
the expiration date is not available. 

String getHeaderField(int idx) Returns the value of the header field at the idx. 
Returns null if the value if idx exceeds the 
number of fields. 

String getHeaderField(String filedName) Returns the value of the header field whose name 
is specified by fieldName. Returns null if the 
specified name is not found 

String getHeaderFieldKey(int idx) Returns the header field key at index idx. 
Returns null if the value of idx exceeds the 
number of fields 

Map<String,List<String>>  
getHeaderFields() 

Returns a map that contains all of the header 
fields and values 

long getLastModified() Returns the time and date, represented in terms 
of milli seconds since January 1, 1970 GMT, of 
the last modification of the resource. Zero if 
returned if the last modified date is unavailable. 

InputStream getInputStream() 
throws IOException 

Returns an InputStream that is linked to the 
connection. 

OutputStream getOutputStream() 
throws IOException 

Returns an OutputStream that is linked to the 
connection. 

UNIT-IV 25 KNREDDY

JAVA PROGRAMMING



      else 
        System.out.println("Date: " + new Date(d)); 
      // get content type 
      System.out.println("Content-Type: " + connection.getContentType()); 
      // get expiration date 
      d = connection.getExpiration(); 
      if(d==0) 
        System.out.println("No expiration information."); 
      else 
        System.out.println("Expires: " + new Date(d)); 
      // get last-modified date 
      d = connection.getLastModified(); 
      if(d==0) 
        System.out.println("No last-modified information."); 
      else 
        System.out.println("Last-Modified: " + new Date(d)); 
      // get content length 
      long len = connection.getContentLengthLong(); 
      if(len == -1) 
        System.out.println("Content length unavailable."); 
      else 
        System.out.println("Content-Length: " + len); 
      if(len != 0) { 
        System.out.println("=== Content ==="); 
        in = connection.getInputStream(); 
        int ch; 
        while (((ch = in.read()) != -1)) { 
          System.out.print((char) ch); 
        } 
      } else { 
        System.out.println("No content available."); 
      } 
    } catch(IOException exc) { 
      System.out.println("Connection Error: " + exc); 
    } finally { 
      try { 
        if(in != null) in.close(); 
      } catch(IOException exc) { 
        System.out.println("Error closing connection: " + exc); 
      } 
    } 
  } 
}  
 
 

HttpURLConnection 
 
 Java provides a subclass of URLConnection that provides support for HTTP connections. 

This class is called HttpURLConnection. 
 HttpURLConnection in obtained, by calling openConnection( ) on a URL object, but it must 

cast the result to HttpURLConnection. 
 Once a reference to an HttpURLConnection object is obtained, we can use any of the 

methods inherited from URLConnection. 
 There are several methods defined by HttpURLConnection. 

UNIT-IV 26 KNREDDY

JAVA PROGRAMMING



String getRequestMethod() Returns a string representing how URL requests are 
made. The default is GET. Other options, such as POST 
are available 

int getResponseCode()  
throws IOException 

Returns HTTP response code, -1is returned if no response 
code can obtained. An IOException throws if connection 
fails 

String getResponseMessage()  
throws IOException 

Returns the response message associated with the 
response code. Returns null if no message is available. An 
IOException throws if connection fails  

 
// Demonstrate HttpURLConnection. 
 
import java.net.*; 
import java.io.*; 
import java.util.*; 
 
class HttpURLConnectionDemo 
{ 
  public static void main(String[] args) { 
 
    try { 
      URL url = new URL("http://www.mcgraw-hill.com"); 
          HttpURLConnection connection = 
             (HttpURLConnection) url.openConnection(); 
 
      // Display request method. 
      System.out.println("Request method is " + 
                         connection.getRequestMethod()); 
 
      // Display response code. 
      System.out.println("Response code is " + 
                         connection.getResponseCode()); 
 
      // Display response message. 
      System.out.println("Response Message is " + 
                         connection.getResponseMessage()); 
 
      // Get a list of the header fields and a set 
      // of the header keys. 
      Map<String, List<String>> hdrMap = connection.getHeaderFields(); 
      Set<String> hdrKeys = hdrMap.keySet(); 
 
      System.out.println("\nHere is the header:"); 
 
      // Display all header keys and values. 
      for(String k : hdrKeys) { 
        System.out.println("Key: " + k + 
                           "  Value: " + hdrMap.get(k)); 
      } 
    } catch(IOException exc) { 
      System.out.println(exc); 
    } 
  } 
} 

  

UNIT-IV 27 KNREDDY

JAVA PROGRAMMING



The URI Class 
 The URI class encapsulates a Uniform Resource Identifier (URI). URIs are similar to URLs. 
 In fact, URLs constitute a subset of URIs. A URI represents a standard way to identify a 

resource. A URL also describes how to access the resource. 
 

Cookies 
 The java.net package includes classes and interfaces that help manage cookies and can be 

used to create a stateful (as opposed to stateless) HTTP session.  
 The classes are CookieHandler, CookieManager, and HttpCookie.  
 The interfaces are CookiePolicy  and CookieStore.  

 
TCP/IP Server Sockets 
 The ServerSocket class is used to create servers that listen for either local or remote client 

programs to connect to them on published ports.  
 ServerSockets are quite different from normal Sockets. When you create a ServerSocket, it 

will register itself with the system as having an interest in client connections.  
 The constructors for ServerSocket reflect the port number that you want to accept 

connections on and, optionally, how long you want the queue for said port to be.  
 The queue length tells the system how many client connections it can leave pending before it 

should simply refuse connections. The default is 50. The constructors might throw an 
IOException under adverse conditions. Here are three of its constructors: 
ServerSocket(int port) throws IOException Creates socket on the specified port with a 

queue length of 50 
ServerSocket(int port, int maxQueue) throws 
IOException 

Creates socket on the specified port with a 
queue length of maxQueue 

ServerSocket(int port, int maxQueue, 
InetAddress localAddress) throws IOException 

Creates socket on the specified port with a 
queue length of maxQueue. 
On a multihomed host, localAddress specifies 
the IP address to which this socket binds 

 ServerSocket has a method called accept( ), which is a blocking call that will wait for a client 
to initiate communications and then return with a normal Socket that is then used for 
communication with the client. 

 
DATAGRAMS 
 Datagrams provide an alternative to the TCP/IP style networking.  
 Datagrams are bundles of information passed between machines. Once the datagram has 

been released to its intended target, there is no assurance that it will arrive or even that 
someone will be there to catch it. Likewise, when the datagram is received, there is no 
assurance that it hasn’t been damaged in transit or that whoever sent it is still there to 
receive a response. 

 Java implements datagrams on top of the UDP protocol by using two classes: the 
DatagramPacket object is the data container, while the DatagramSocket is the mechanism 
used to send or receive the DatagramPackets. 

DatagramSocket 
 DatagramSocket defines four public constructors. They are: 

DatagramSocket( ) throws SocketException 
DatagramSocket(int port) throws SocketException 
DatagramSocket(int port, InetAddress ipAddress) throws SocketException 
DatagramSocket(SocketAddress address) throws SocketException 

 DatagramSocket defines many methods. Two of the most important are send() and receive(): 
void send(DatagramPacket packet) throws IOException 
void receive(DatagramPacket packet) throws IOException 

 The send( ) method sends a packet to the port specified by packet. The receive( ) method 
waits for a packet to be received from the port specified by packet and returns the result. 

 DatagramSocket also defines the close( ) method, which closes the socket. Beginning with 
JDK 7, DatagramSocket implements AutoCloseable, which means that a DatagramSocket 
can be managed by a try-with-resources block. 

UNIT-IV 28 KNREDDY

JAVA PROGRAMMING



DatagramPacket 
 DatagramPacket defines several constructors. They are: 

DatagramPacket(byte data [ ], int size) 
DatagramPacket(byte data [ ], int offset, int size) 
DatagramPacket(byte data [ ], int size, InetAddress ipAddress, int port) 
DatagramPacket(byte data [ ], int offset, int size, InetAddress ipAddress, int port) 

 DatagramPacket defines several methods that give access to the address and port number of 
a packet, as well as the raw data and its length.  

 In general, the get methods are used on packets that are received and the set methods are 
used on packets that will be sent. 

InetAddress getAddress() Returns the address of the source(for datagrams being received) 
or destination ( for datagrams being sent) 

byte[] getData() 
 

Returns the byte array that contains the data buffer. Mostly used 
to retrieve data from the datagram after it has been received 

int getLength() 
 

Returns the number of bytes of data contained in the buffer. This 
may be less than the size of the underlying byte array 

int getOffset() Returns the starting index of the data in the buffer 
int getPort() Returns the port number used by the host on the other side of the 

connection 
void setData(byte[] data) Sets the packets data to data, the offset to zero, and the length to 

the number of bytes in data.  
void setData(byte[] data, int 
idx, int size) 

Sets the packets data to data, the offset to idx, and the length to 
size. 

void setLength(int size) Sets the packets data to size. This value plus the offset must not 
exceed the length of the underlying bytes array 

  
A Datagram Example: 
The following example demonstrates datagrams by implementing a very simple client and 
server. In this example the server reads string entered at the keyboard and sends them to the 
client. The client simply waits until it receives a packet and then displays the string. This 
process continues until ‘stop’ is entered. In that case, both the client and server terminate. 
// Demonstrate datagrams -- server side. 
import java.net.*; 
import java.io.*; 
class DGServer { 
  // These ports were chosen arbitrarily. You must use 
  // unused ports on your machine. 
  public static int clientPort = 50000; 
  public static int serverPort = 50001; 
  public static DatagramSocket ds; 
  public static void dgServer() throws IOException { 
    byte[] buffer; 
    String str; 
    BufferedReader conin = new BufferedReader(new InputStreamReader(System.in)); 
    System.out.println("Enter characters. Enter 'stop' to quit."); 
    for(;;) { 
      // read a string from the keyboard 
      str = conin.readLine(); 
      // convert string to byte array for transmission 
      buffer = str.getBytes(); 
      // send a new packet that contains the string 
      ds.send(new DatagramPacket(buffer, buffer.length,InetAddress.getLocalHost(), clientPort)); 
      // quit when "stop" is entered 
      if(str.equals("stop")) { 
        System.out.println("Server Quits."); 
        return; 
      } 
    } 

UNIT-IV 29 KNREDDY

JAVA PROGRAMMING



  } 
  public static void main(String[] args) { 
    ds = null; 
 
    try { 
      ds = new DatagramSocket(serverPort); 
      dgServer(); 
    } catch(IOException exc) { 
      System.out.println("Communication error: " + exc); 
    } finally { 
      if(ds != null) ds.close(); 
    } 
  } 
} 
 
 
// Demonstrate datagrams -- client side. 
 
import java.net.*; 
import java.io.*; 
 
class DGClient { 
  // This ports was choosen arbitrarily. You must use 
  // an unused port on your machine. 
  public static int clientPort = 50000; 
  public static int buffer_size = 1024; 
  public static DatagramSocket ds; 
  public static void dgClient() throws IOException { 
    String str; 
    byte[] buffer = new byte[buffer_size]; 
 
    System.out.println("Receiving Data"); 
    for(;;) { 
      // create a new packet to receive the data 
      DatagramPacket p = new DatagramPacket(buffer, buffer.length); 
      // wait for a packet 
      ds.receive(p); 
      // convert buffer into String 
      str = new String(p.getData(), 0, p.getLength()); 
      // display the string on the client 
      System.out.println(str); 
      // quit when "stop" is received. 
      if(str.equals("stop")) { 
        System.out.println("Client Stopping."); 
        break; 
      } 
    } 
  } 
  public static void main(String[] args) { 
    ds = null; 
    try { 
      ds = new DatagramSocket(clientPort); 
      dgClient(); 
    } catch(IOException exc) { 
      System.out.println("Communication error: " + exc); 
    } finally { 
      if(ds != null) ds.close(); 
    } 
  } 
} 

UNIT-IV 30 KNREDDY

JAVA PROGRAMMING




