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PARALLEL PROCESSING  
 A parallel processing system is able to perform concurrent data processing to achieve faster 

execution time  

 The system may have two or more ALUs and be able to execute two or more instructions at the 

same time  

 Also, the system may have two or more processors operating concurrently  

 Goal is to increase the throughput – the amount of processing that can be accomplished during a 

given interval of time  

 Parallel processing increases the amount of hardware required  

 Example: the ALU can be separated into three units and the operands diverted to each unit under the 

supervision of a control unit  

 All units are independent of each other  

 A multifunctional organization is usually 

associated with a complex control unit to 

coordinate all the activities among the various 

components  

 Parallel processing can be classified from:  

 The internal organization of the processors  

 The interconnection structure between 

processors  

 The flow of information through the system  

 The number of instructions and data items 

that are manipulated simultaneously  

 The sequence of instructions read from memory 

is the instruction stream  

 The operations performed on the data in the processor is the data stream  

 Parallel processing may occur in the instruction stream, the data stream, or both  

 Flynn’s Computer classification:  

 Single instruction stream, single data stream – SISD  
 Single instruction stream, multiple data stream – SIMD  
 Multiple instruction stream, single data stream – MISD  
 Multiple instruction stream, multiple data stream – MIMD  

 SISD – Instructions are executed sequentially. Parallel processing may be achieved by means of 

multiple functional units or by pipeline processing  

 SIMD – Includes multiple processing units with a single control unit. All processors receive the 

same instruction, but operate on different data.  

 MIMD – A computer system capable of processing several programs at the same time.  
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PIPELINING 
 Pipelining is a technique of decomposing a sequential process into sub operations, with each 

sub process being executed in a special dedicated segment that operates concurrently with all 

other segments   

 Each segment performs partial processing dictated by the way the task is partitioned 

 The result obtained from the computation in each segment is transferred to the next segment in 

the pipeline  

 The final result is obtained after the data have passed through all segments  

 Each segment consists of an input register followed by an combinational circuit  

 A clock is applied to all registers after enough time has elapsed to perform all segment activity  

 The information flows through the pipeline one step at a time  

 Example:  Ai * Bi + Ci   for i = 1, 2, 3, …, 7  

 The sub operations performed in each segment are:  

R1 ← Ai , R2 ← Bi 
R3 ← R1 * R2, R4 ← Ci 
R5 ← R3 + R4  

 
 Any operation that can be decomposed into a sequence of suboperations of about the same 

complexity can be implemented by a pipeline processor  

 The technique is efficient for those applications that need to repeat the same task many time 

with different sets of data  

 The general structure of a four-segment 

pipeline is as shown in fig; 

 A task is the total operation performed 

going through all segments of a pipeline  

 The behavior of a pipeline can be illustrated with a space-time diagram  
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 This shows the segment utilization as a function of time  

 Once the pipeline is 

full, it takes only one 

clock period to obtain 

an output  

 Consider a k-segment 

pipeline with a clock 

cycle time tp to execute n tasks  

 The first task T1 requires time ktp to complete  

 The remaining n – 1 tasks finish at the rate of one task per clock cycle and will be completed 

after time (n – 1)tp  

 The total time to complete the n tasks is [k + n – 1]tp  

 The above example requires [4 + 6 – 1] clock cycles to finish  

 Consider a non-pipeline unit that performs the same operation and takes tn time to complete 

each task  

 The total time to complete n tasks would be ntn  

 The speedup of a pipeline processing over an equivalent non-pipeline processing is defined by 
the ratio  

 
 As the number of tasks increase, the speedup becomes   

  
 If we assume that the time to process a task is the same in both circuits, tn =k tp  

 
 Therefore, the theoretical maximum speedup that a pipeline can provide is k  
 Example:  

Cycle time = tp = 20 ns   # of segments = k = 4  # of tasks = n = 100  

 The pipeline system will take (k + n – 1)tp = (4 + 100 –1)20ns = 2060 ns  

 Assuming that tn = ktp = 4 * 20 = 80 ns,  

 A non-pipeline system requires nktp = 100 * 80 = 8000 ns  

 The speedup ratio = 8000/2060 = 3.88  

 The pipeline cannot operate at its maximum theoretical rate  

 One reason is that the clock cycle must be chosen to equal the time delay of the segment with 

the maximum propagation time  

 Pipeline organization is applicable for arithmetic operations and fetching instructions  
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ARITHMETIC PIPELINE  
 Pipeline arithmetic units are usually found in very high speed computers  

 They are used to implement floating-point operations, multiplication of fixed-point numbers, 

and similar computations encountered in scientific problems  

 Example for floating-point addition and subtraction  

 Inputs are two normalized floating-point binary numbers  

X = A x 2a 

Y = B x 2b 

 A and B are two fractions that represent the 

mantissas  

 a and b are the exponents  

 Four segments are used to perform the 

following:  

 Compare the exponents  

 Align the mantissas  

 Add or subtract the mantissas  

 Normalize the result  

 X = 0.9504 x 103 and Y = 0.8200 x 102  

 The two exponents are subtracted in the first 

segment to obtain 3-2=1  

 The larger exponent 3 is chosen as the 

exponent of the result  

 Segment 2 shifts the mantissa of Y to the right 

to obtain Y = 0.0820 x 103  

 The mantissas are now aligned  

 Segment 3 produces the sum Z = 1.0324 x 103  

 Segment 4 normalizes the result by shifting the mantissa once to the right and incrementing the 

exponent by one to obtain Z = 0.10324 x 104  

 The comparator, shifter, adder-subtractor, incrementer, and decrementer in the floating-point 

pipeline are implemented with combinational circuits.  

 Suppose that the time delays of the four segments are t1 = 60 ns, t2 = 70 ns, t3 = 100 ns,           

t4 = 80 ns, and the interface registers have a delay of tr = 10 ns. The clock cycle is chosen to be 

tp = t3 + tr = 110 ns. An equivalent non-pipeline floating point adder-subtractor will have a 

delay time tn = t1 + t2 + t3 + t4 + tr = 320ns. In this case the pipelined adder has a speedup of 

32011 10 = 2. 9 over the non-pipelined adder. 
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INSTRUCTION PIPELINE  
 An instruction pipeline reads consecutive instructions from memory while previous instructions 

are being executed in other segments  

 This causes the instruction fetch and execute phases to overlap and perform simultaneous 

operations  

 If a branch out of sequence occurs, the pipeline must be emptied and all the instructions that 

have been read from memory after the branch instruction must be discarded  

 Consider a computer with an instruction fetch unit and an instruction execution unit forming a 

two segment pipeline  

 A FIFO buffer can be used for the fetch segment  

 Thus, an instruction stream can be placed in a queue, waiting for decoding and processing by 

the execution segment  

 This reduces the average access time to memory for reading instructions  

 Whenever there is space in the buffer, the control unit initiates the next instruction fetch phase  

 The following steps are needed to process each instruction:  

1. Fetch the instruction from memory  

2. Decode the instruction  

3. Calculate the effective address  

4. Fetch the operands from memory  

5. Execute the instruction  

6. Store the result in the proper place  

 The pipeline may not perform at its maximum rate 

due to:  

 Different segments taking different times to operate  

 Some segment being skipped for certain operations  

 Memory access conflicts  

Example: Four-segment instruction pipeline  

 Assume that the decoding can be combined with 

calculating the EA in one segment  

 Assume that most of the instructions store the result 

in a register so that the execution and storing of the 

result can be combined in one segment  

  While an instruction is being executed in segment 4, the next instruction in sequence is busy 

fetching an operand from memory in segment 3. The effective address may be calculated in a 
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separate arithmetic circuit for the third instruction, and whenever the memory is available, the 

fourth and all subsequent instructions can be fetched and placed in an instruction FIFO 

 Up to four sub operations in the instruction cycle can overlap and up to four different 

instructions can be in progress of being processed at the same time  

 The following figure shows the operation of the instruction pipeline. The four segments are 

represented in the diagram with an abbreviated symbol. 

 FI: Fetch an instruction from memory 

 DA:Decode the instruction and calculate the effective address of the operand 

 FO:  Fetch the operand 

 EX:  Execute the operation 

 

 
 It is assumed that the processor has separate instruction and data memories  

 Assume now that instruction 3 is a branch instruction. As soon as this instruction is decoded in 

segment DA in step 4, the transfer from FI to DA of the other instructions is halted until the 

branch instruction is executed in step 6. If the branch is taken, a new instruction is fetched in 

step 7. If the branch is not taken, the instruction fetched previously in step 4 can be used. The 

pipeline then continues until a new branch instruction is encountered. 

 Another delay may occur in the pipeline if the EX segment needs to store the result of the 

operation in the data memory while the FO segment needs to fetch an operand. In that case, 

segment FO must wait until segment EX has finished its operation. 

 Reasons for the pipeline to deviate from its normal operation are:  

 Resource conflicts caused by access to memory by two segments at the same time. Most of 

these instructions can be resolved by using separate instruction and data memories. 

 Data dependency conflicts arise when an instruction depends on the result of a previous 

instruction, but his result is not yet available  

 Branch difficulties arise from program control instructions that may change the value of PC  
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Methods to handle data dependency:  

 Hardware interlocks are circuits that detect instructions whose source operands are 

destinations of prior instructions. Detection causes the hardware to insert the required delays 

without altering the program sequence.  

 Operand forwarding uses special hardware to detect a conflict and then avoid it by routing the 

data through special paths between pipeline segments. This requires additional hardware paths 

through multiplexers as well as the circuit to detect the conflict.  

 Delayed load is a procedure that gives the responsibility for solving data conflicts to the 

compiler. The compiler is designed to detect a data conflict and reorder the instructions as 

necessary to delay the loading of the conflicting data by inserting no-operation instructions.  

 

Methods to handle branch instructions:  

 Prefetching the target instruction in addition to the next instruction allows either instruction 

to be available.  

 A branch target buffer (BTB) is an associative memory included in the fetch segment of the 

branch instruction that stores the target instruction for a previously executed branch. It also 

stores the next few instructions after the branch target instruction. This way, the branch 

instructions that have occurred previously are readily available in the pipeline without 

interruption.  

 The loop buffer is a variation of the BTB. It is a small very high speed register file maintained 

by the instruction fetch segment of the pipeline. Stores all branches within a loop segment.  

 Branch prediction uses some additional logic to guess the outcome of a conditional branch 

instruction before it is executed. The pipeline then begins prefetching instructions from the 

predicted path.  

 Delayed branch is used in most RISC processors so that the compiler rearranges the 

instructions to delay the branch.  
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CHARACTERISTICS OF MULTIPROCESSORS 
 A multiprocessor system is an interconnection of two or more CPUs with memory and input-

output equipment. The term "processor" in multiprocessor can mean either a central processing 

unit (CPU) or an input-output processor (lOP).  

 As it is most commonly defined, a multiprocessor system implies the existence of multiple 

CPUs. Multiprocessors are classified as multiple instruction stream, multiple data stream 

(MIMD) systems. 

 There are some similarities between multiprocessor and multicomputer systems since both 

support concurrent operations. The network consists of several autonomous computers that may 

or may not communicate with each other. A multiprocessor system is controlled by one 

operating system that provides interaction between processors and all the components of the 

system cooperate in the solution of a problem. 

 Although some large-scale computers include two or more CPUs in their overall system. 

Microprocessors take very little physical space and are very inexpensive brings about the 

feasibility of interconnecting a large number of microprocessors into one composite system.  

 Very-large-scale integrated circuit technology has reduced the cost of computer components  

 Multiprocessing improves the reliability of the system so that a failure or error in one part has a 

limited effect on the rest of the system.  

 The benefit derived from a multiprocessor organization is an improved system performance. 

The system derives its high performance in one of two ways. 

1. Multiple independent jobs can be made to operate in parallel. 

2. A single job can be partitioned into multiple parallel tasks. 

 Multiprocessors are classified by the way their memory is organized.  

 A multiprocessor system with common shared memory is classified as a shared memory or 

tightly coupled multiprocessor. Most commercial tightly coupled multiprocessors provide a 

cache memory with each CPU.  

 An alternative model of microprocessor is the distributed-memory or loosely coupled system. 

Each processor element in a loosely coupled system has its own private local memory.  

 Loosely coupled systems are most efficient when the interaction between tasks is minimal, 

whereas tightly coupled systems can tolerate a higher degree of interaction between tasks. 
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INTERCONNECTION STRUCTURES 
  The components that form a multiprocessor system are CPUs, lOPs connected to input-output 

devices, and a memory unit that may be partitioned into a number of separate modules.  

 The interconnection between the components can have different physical configurations, 

depending on the number of transfer paths that are available between the processors and 

memory in a shared memory system or among the processing elements in a loosely coupled 

system. 

 There are several physical forms available for establishing an interconnection network. Some of 

these schemes are: 

1. Time-shared common bus 
2. Multiport memory 
3. Crossbar switch 
4. Multistage switching network 
5. Hypercube system 
Time-Shared Common Bus 

 A common-bus multiprocessor system consists 

of a number of processors connected through a 

common path to a memory unit. A time-shared 

common bus for five processors is shown in Fig.  

 Only one processor can communicate with the memory or another processor at any given time. 

 Transfer operations are conducted by the processor that is in control of the bus at the time.  

 A command is issued to inform the destination unit what operation is to be performed. The 

receiving unit recognizes its address in the bus and responds to the control signals from the 

sender, after which the transfer is initiated.  

 The transfer conflicts must be resolved by incorporating a bus controller that establishes 

priorities among the requesting units. 

 A single common-bus system is restricted to one transfer at a time.  

 The processors in the system can be kept busy more often through the implementation of two or 

more independent buses to permit multiple simultaneous bus transfers.  

 A more economical implementation 

of a dual bus structure is depicted in 

Fig.  

 Each local bus may be connected to a 

CPU, an lOP, or any combination of 

processors.  

 A system bus controller links each local bus to a common system bus.  
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 The IO devices connected to the local lOP, as well as the local memory, are available to the 

local processor.  

 If an lOP is connected directly to the system bus, the IO devices attached to it may be made 

available to all processors. Only one processor can communicate with the shared memory and 

other common resources through the system bus at any given time.  

 The other processors are kept busy communicating with their local memory and IO devices. 

 Part of the local memory may be designed as a cache memory attached to the CPU  

 

Multiport Memory 

 A multiport memory system employs separate buses between each memory module and each 

CPU. This is shown in Fig. for four CPUs and four memory modules (MMs).  

 Each processor bus is connected to each memory 

module. A processor bus consists of the address, data, 

and control lines required to communicate with memory.  

 The memory module is said to have four ports and each 

port accommodates one of the buses. The module must 

have internal control logic to determine which port will 

have access to memory at any given time.  

 Memory access conflicts are resolved by assigning fixed priorities to each memory port. The 

priority for memory access associated with each processor may be established by the physical 

port position that its bus occupies in each module.  

 The advantage of the multi port memory organization is the high transfer rate that can be 

achieved because of the multiple paths between processors and memory.  

 The disadvantage is that it requires expensive memory control logic and a large number of 

cables and connectors.  

Crossbar Switch 

 The crossbar switch organization consists of a number of 

cross points that are placed at intersections between 

processor buses and memory module paths. 

 The small square in each cross point is a switch that 

determines the path from a processor to a memory 

module. 

 Each switch point has control logic to set up the transfer 

path between a processor and memory.  
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 It examines the address that is placed in the bus to determine whether its particular module is 

being addressed.  

 It also resolves multiple requests for access to the same memory module on a predetermined 

priority basis. 

 The functional design of a crossbar switch connected to one memory module is shown in figure. 

 The circuit consists of multiplexers that select the 

data address, and control from one CPU for 

communication with the memory module. 

 Priority levels are established by the arbitration 

logic to select one CPU when two or more CPUs 

attempt to access the same memory.  

 A crossbar switch organization supports 

simultaneous transfers from memory modules because there is a separate path associated with 

each module.  

 Multistage Switching Network 

 The basic component of a multistage network is a two-

input, two-out interchange switch.  

 The switch has the capability of connecting input A to 

either of the outputs. Terminal B of the switch behaves in a 

similar fashion. The switch also has the capability to 

arbitrate between conflicting requests.  

 Using the 2 x 2 switch as a building block, it is possible to 

build multistage network to control the communication 

between a number of sources and destinations.  

 Consider the binary tree shown Fig. The two processors 

P1 and P2 are connected through switches to eight 

memory modules marked in binary from 000 through 111.   

 The path from source to a destination is determined from 

the binary bits of the destination number. The first bit of 

the destination number determines the switch output in the first level. The second bit specifies 

the output of the switch in the second level, and the third bit specifies the output of the switch in 

the third level.   

  Many different topologies have been proposed for multistage switching networks to control 

processor-memory communication in a tightly coupled multiprocessor system or to control the 

communication between the processing elements in a loosely coupled system.  
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 One such topology is the omega switching network 

shown in Fig.   

 In this configuration, there is exactly one path from 

each source to any particular destination. 

 Some request patterns, however, cannot be 

connected simultaneously. For example, any two 

sources cannot be connected simultaneously to destinations 000 and 001.  

Hypercube Interconnection 

 The hypercube or binary n-cube multiprocessor structure is a loosely coupled system composed 

of N = 2n processors interconnected in an n-dimensional binary cube.  

 Each processor forms a node of the cube.  

 Each processor has direct communication paths to n other neighbor processors. These paths 

correspond to the edges of the cube.  

 Fig shows the hypercube structure for n = 1, 2, and 3.  

 A one-cube structure has n = 1 and 2n = 2. It contains 

two processors interconnected by a single path.  

 A two-cube structure has n = 2 and 2n = 4. It contains 

four nodes interconnected as a square.  

 A three-cube structure has eight nodes interconnected as a cube. 

  An n -cube structure has 2n nodes with a processor residing in each node. Each node is 

assigned a binary address in such a way that the addresses of two neighbors differ in exactly 

one bit position.  

 Routing messages through an n-cube structure may take from one to n links from a source node 

to a destination node.  

 For example, in a three-cube structure, node 000 can communicate directly with node 001. It 

must cross at least two links to communicate with 011 (from 000 to 001 to 011 or from 000 to 

010 to 011).  

 A routing procedure can be developed by computing the exclusive-OR of the source node 

address with the destination node address. The resulting binary value will have 1 bits 

corresponding to the axes on which the two nodes differ. The message is then sent along any 

one of the axes.  

 For example, in a three-cube structure, a message at 010 going to 001 produces an XOR of the 

two addresses equal to 011 . The message can be sent along the second axis to 000 and then 

through the third axis to 001.  

 

UNIT-V 13 KNREDDY

COMPUTER ORGANIZATION AND ARCHITECTURE



 INTERPROCESSOR ARBITRATION 

 Computer systems contain a number of buses at various levels to facilitate the transfer of 

information between components. The CPU contains a number of internal buses for transferring 

information between processor registers and ALU.  

 A memory bus consists of lines for transferring data, address, and read/write information.  

 An I/O bus is used to transfer information to and from input and output devices.  

 A bus that connects major components in a multiprocessor system, such as CPUs, IOPs, and 

memory, is called a system bus.  

 The processors in a shared memory multiprocessor system request access to common memory 

or other common resources through the system bus. If no other processor is currently utilizing 

the bus, the requesting processor may be granted access immediately.  

 Other processors may request the system bus at the same time. Arbitration must then be 

performed to resolve this multiple contention for the shared resources. The arbitration logic 

would be part of the system bus controller placed between the local bus and the system bus. 

System Bus 

 A typical system bus consists of approximately 100 signal lines. These lines are divided into 

three functional groups: data, address, and control. In addition, there are power distribution 

lines that supply power to the components.  

 For example, the IEEE standard 796 multibus system has 16 data lines, 24 address lines, 26 

control lines, and 20 power lines, for a total of 86 lines.  

 Data transfers over the system bus may be synchronous or asynchronous. 

 In a synchronous bus, each data item is transferred during a time slice known in advance to 

both source and destination units. Synchronization is achieved by driving both units from a 

common clock source. 

 In an asynchronous bus, each data item being 

transferred is accompanied by handshaking control 

signals to indicate when the data are transferred from the 

source and received by the destination 

 The following table lists the 86 lines that are available in 

the IEEE standard 796 multibus.  
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 Serial Arbitration Procedure 

 Arbitration procedures service all processor requests on the basis of established priorities. A 

hardware bus priority resolving technique can be established by means of a serial or parallel 

connection of the units requesting control of the system bus.  

 The serial priority resolving technique is obtained from a daisy-chain connection of bus 

arbitration circuits similar to the priority interrupt logic. 

 The processors connected to the system bus are assigned priority according to their position 

along the priority control line. 

 The device closest to the priority line is assigned the highest priority. When multiple devices 

concurrently request the use of the bus, the device with the highest priority is granted access to 

it. 

 
  The processor whose arbiter has a PI = 1 and PO = 0 is the one that is given control of the 

system bus 

 A processor may be in the middle of a bus operation when a higher priority processor requests 

the bus. The lower-priority processor must complete its bus operation before it relinquishes 

control of the bus.  

  When an arbiter receives control of the bus (because its PI = 1 and PO = 0) it examines the 

busy line. If the line is inactive, it means that no other processor is using the bus. The arbiter 

activates the busy line and its processor takes control of the bus. However, if the arbiter finds 

the busy line active, it means that another processor is currently using the bus.  

 The arbiter keeps examining the busy line while the lower-priority processor that lost control of 

the bus completes its operation.  

 When the bus busy line returns to its inactive state, the higher-priority arbiter enables the busy 

line, and its corresponding processor can then conduct the required bus transfers.  

 

 

 

UNIT-V 15 KNREDDY

COMPUTER ORGANIZATION AND ARCHITECTURE



Parallel Arbitration Logic 

 The parallel bus arbitration technique uses an 

external priority encoder and a decoder as shown in 

Fig. Each bus arbiter in the parallel scheme has a bus 

request output line and a bus acknowledge input line.  

 Each arbiter enables the request line when its 

processor is requesting access to the system bus. The 

processor takes control of the bus if its acknowledge 

input line is enabled. 

Dynamic Arbitration Algorithms 

 A dynamic priority algorithm gives the system the capability for changing the priority of the 

devices while the system is in operation.  

 The time slice algorithm allocates a fixed-length time slice of bus time that is offered 

sequentially to each processor, in round-robin fashion. The service given to each system 

component with this scheme is independent of its location along the bus.  

 In a bus system that uses polling, the bus grant signal is replaced by a set of lines called poll 

lines which are connected to all units. These lines are used by the bus controller to define an 

address for each device connected to the bus. 

 When a processor that requires access recognizes its address, it activates the bus busy line and 

then accesses the bus. After a number of bus cycles, the polling process continues by choosing a 

different processor. The polling sequence is normally programmable, and as a result, the 

selection priority can be altered under program control. 

 The least recently used (LRU) algorithm gives the highest priority to the requesting device 

that has not used the bus for the longest interval. The priorities are adjusted after a number of 

bus cycles according to the LRU algorithm.  

 In the first-come, first-serve scheme, requests are served in the order received. To implement 

this algorithm, the bus controller establishes a queue arranged according to the time that the bus 

requests arrive. Each processor must wait for its turn to use the bus on a first-in, first-out 

(FIFO) basis. 

 The rotating daisy-chain procedure is a dynamic extension of the daisy chain algorithm. In this 

scheme there is no central bus controller, and the priority line is connected from the priority-out 

of the last device back to the priority-in of the first device in a closed loop.  

 Each arbiter priority for a given bus cycle is determined by its position along the bus priority 

line from the arbiter whose processor is currently controlling the bus. Once an arbiter releases 

the bus, it has the lowest priority. 
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 INTERPROCESSOR COMMUNICATION AND SYNCHRONIZATION 

 The various processors in a multiprocessor system must be provided with a facility for 

communicating with each other. A communication path can be established through common 

input-output channels.  

 In a shared memory multiprocessor system, the most common procedure is to set aside a 

portion of memory that is accessible to all processors. The primary use of the common memory 

is to act as a message center similar to a mailbox, where each processor can leave messages for 

other processors and pick up messages intended for it.  

 The sending processor structures a request, a message, or a procedure, and places it in the 

memory mailbox. Status bits residing in common memory are generally used to indicate the 

condition of the mailbox, whether it has meaningful information, and for which processor it is 

intended.  

 The receiving processor can check the mailbox periodically to determine if there are valid 

messages for it. The response time of this procedure can be time consuming since a processor 

will recognize a request only when polling messages.  

 A more efficient procedure is for the sending processor to alert the receiving processor directly 

by means of an interrupt signal. This can be accomplished through a software-initiated 

interprocessor interrupt by means of an instruction in the program of one processor which when 

executed produces an external interrupt condition in a second processor. This alerts the 

interrupted processor of the fact that a new message was inserted by the interrupting processor. 

 In addition to shared memory, a multiprocessor system may have other shared resources. For 

example, a magnetic disk storage unit connected to an lOP may be available to all CPUs. This 

provides a facility for sharing of system programs stored in the disk.  

 A communication path between two CPUs can be established through a link between two lOPs 

associated with two different CPUs. This type of link allows each CPU to treat the other as an 

IO device so that messages can be transferred through the IO path.  

 To prevent conflicting use of shared resources by several processors there must be a provision 

for assigning resources to processors. This task is given to the operating system. There are three 

organizations that have been used in the design of operating system for multiprocessors: 

master-slave configuration, separate operating system, and distributed operating system. 

 In a master-slave mode, one processor, designated the master, always executes the operating 

system functions. The remaining processors, denoted as slaves, do not perform operating 

system functions. If a slave processor needs   an operating system service, it must request it by 

interrupting the master and waiting until the current program can be interrupted. 
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 In the separate operating system organization, each processor can execute the operating system 

routines it needs. This organization is more suitable for loosely coupled systems where every 

processor may have its own copy of the entire operating system. 

 In the distributed operating system organization, the operating system routines are distributed 

among the available processors. However, each particular operating system function is assigned 

to only one processor at a time. This type of organization is also referred to as a floating 

operating system since the routines float from one processor to another and the execution of the 

routines may be assigned to different processors at different times. 

 In a loosely coupled multiprocessor system the memory is distributed among the processors and 

there is no shared memory for passing information. 

 The communication between processors is by means of message passing through IO channels. 

The communication is initiated by one processor calling a procedure that resides in the memory 

of the processor with which it wishes to communicate. When the sending processor and 

receiving processor name each other as a source and destination, a channel of communication is 

established. 

 A message is then sent with a header and various data objects used to communicate between 

nodes. There may be a number of possible paths available to send the message between any two 

nodes.  

 The operating system in each node contains routing information indicating the alternative paths 

that can be used to send a message to other nodes. The communication efficiency of the 

interprocessor network depends on the communication routing protocol, processor speed, data 

link speed, and the topology of the network. 

 

Interprocessor Synchronization 

 The instruction set of a multiprocessor contains basic instructions that are used to implement 

communication and synchronization between cooperating processes. 

 Communication refers to the exchange of data between different processes. For example, 

parameters passed to a procedure in a different processor constitute interprocessor 

communication.  

 Synchronization refers to the special case where the data used to communicate between 

processors is control information. Synchronization is needed to enforce the correct sequence of 

processes and to ensure mutually exclusive access to shared writable data. 

 Multiprocessor systems usually include various mechanisms to deal with the synchronization of 

resources.  
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 Low-level primitives are implemented directly by the hardware. These primitives are the basic 

mechanisms that enforce mutual exclusion for more complex mechanisms implemented in 

software.  

 A number of hardware mechanisms for mutual exclusion have been developed. 

 One of the most popular methods is through the use of a binary semaphore. Mutual Exclusion 

with a Semaphore 

 A properly functioning multiprocessor system must provide a mechanism that will guarantee 

orderly access to shared memory and other shared resources. 

 This is necessary to protect data from being changed simultaneously by two or more processors. 

This mechanism has been termed mutual exclusion. Mutual exclusion must be provided in a 

multiprocessor system to enable one processor to exclude or lock out access to a shared 

resource by other processors when it is in a critical section.  

 A critical section is a program sequence that, once begun, must complete execution before 

another processor accesses the same shared resource. 

 A binary variable called a semaphore is often used to indicate whether or not a processor is 

executing a critical section. A semaphore is a software controlled flag that is stored in a 

memory location that all processors can access.  

 When the semaphore is equal to 1, it means that a processor is executing a critical program, so 

that the shared memory is not available to other processors. 

 When the semaphore is equal to 0, the shared memory is available to any requesting processor. 

Processors that share the same memory segment agree by convention not to use the memory 

segment unless the semaphore is equal to 0, indicating that memory is available . They also 

agree to set the semaphore to 1 when they are executing a critical section and to clear it to 0 

when they are finished. 

 Testing and setting the semaphore is itself a critical operation and must be performed as a single 

indivisible operation. If it is not, two or more processors may test the semaphore simultaneously 

and then each set it, allowing them to enter a critical section at the same time. This action would 

allow simultaneous execution of critical section, which can result in erroneous initialization of 

control parameters and a loss of essential information. 

 A semaphore can be initialized by means of a test and set instruction in conjunction with a 

hardware lock mechanism.  

 A hardware lock is a processor generated signal that serves to prevent other processors from 

using the system bus as long as the signal is active. The test-and-set instruction tests and sets a 

semaphore and activates the lock mechanism during the time that the instruction is being 

executed.  
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 This prevents other processors from changing the semaphore between the time that the 

processor is testing it and the time that it is setting it. Assume that the semaphore is a bit in the 

least significant position of a memory word whose address is symbolized by SEM.  

 Let the mnemonic TSL designate the "test and set while locked" operation. The instruction   

TSL  SEM will be executed in two memory cycles (the first to read and the second to write) 

without interference as follows: 

R M[SEM]   Test semaphore 

M[SEM]1   Set semaphore 

 The semaphore is tested by transferring its value to a processor register R and then it is set to 1. 

The value in R determines what to do next.  

 If the processor finds that R = 1, it knows that the semaphore was originally set. (The fact that it 

is set again does not change the semaphore value.) That means that another  processor is 

executing a critical section, so the processor that checked the semaphore does not access the 

shared memory.  

 If R = 0, it means that the common memory (or the shared resource that the semaphore 

represents) is available. The semaphore is set to 1 to prevent other processors from accessing 

memory. The processor can now execute the critical section.  

 The last instruction in the program must clear location SEM to zero to release the shared 

resource to other processors. Note that the lock signal must be active during the execution of 

the test-and-set instruction. It does not have to be active once the semaphore is set. 

 Thus the lock mechanism prevents other processors from accessing memory while the 

semaphore is being set. The semaphore itself, when set, prevents other processors from 

accessing shared memory while one processor is executing a critical section. 
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