
UNIT-V

PIPELINE AND MULTIPROCESSORS
Pipeline

 Parallel Processing

 Pipelining

 Arithmetic Pipeline

 Instruction Pipeline.

Multiprocessors

 Characteristics of Multiprocessors

 Interconnection Structures

 Inter Processor Arbitration

 Inter Processor Communication and Synchronization

UNIT-V 1 KNREDDY

COMPUTER ORGANIZATION AND ARCHITECTURE

PARALLEL PROCESSING
 A parallel processing system is able to perform concurrent data processing to achieve faster

execution time

 The system may have two or more ALUs and be able to execute two or more instructions at the

same time

 Also, the system may have two or more processors operating concurrently

 Goal is to increase the throughput – the amount of processing that can be accomplished during a

given interval of time

 Parallel processing increases the amount of hardware required

 Example: the ALU can be separated into three units and the operands diverted to each unit under the

supervision of a control unit

 All units are independent of each other

 A multifunctional organization is usually

associated with a complex control unit to

coordinate all the activities among the various

components

 Parallel processing can be classified from:

 The internal organization of the processors

 The interconnection structure between

processors

 The flow of information through the system

 The number of instructions and data items

that are manipulated simultaneously

 The sequence of instructions read from memory

is the instruction stream

 The operations performed on the data in the processor is the data stream

 Parallel processing may occur in the instruction stream, the data stream, or both

 Flynn’s Computer classification:

 Single instruction stream, single data stream – SISD
 Single instruction stream, multiple data stream – SIMD
 Multiple instruction stream, single data stream – MISD
 Multiple instruction stream, multiple data stream – MIMD

 SISD – Instructions are executed sequentially. Parallel processing may be achieved by means of

multiple functional units or by pipeline processing

 SIMD – Includes multiple processing units with a single control unit. All processors receive the

same instruction, but operate on different data.

 MIMD – A computer system capable of processing several programs at the same time.

UNIT-V 2 KNREDDY

COMPUTER ORGANIZATION AND ARCHITECTURE

PIPELINING
 Pipelining is a technique of decomposing a sequential process into sub operations, with each

sub process being executed in a special dedicated segment that operates concurrently with all

other segments

 Each segment performs partial processing dictated by the way the task is partitioned

 The result obtained from the computation in each segment is transferred to the next segment in

the pipeline

 The final result is obtained after the data have passed through all segments

 Each segment consists of an input register followed by an combinational circuit

 A clock is applied to all registers after enough time has elapsed to perform all segment activity

 The information flows through the pipeline one step at a time

 Example: Ai * Bi + Ci for i = 1, 2, 3, …, 7

 The sub operations performed in each segment are:

R1 ← Ai , R2 ← Bi
R3 ← R1 * R2, R4 ← Ci
R5 ← R3 + R4

 Any operation that can be decomposed into a sequence of suboperations of about the same

complexity can be implemented by a pipeline processor

 The technique is efficient for those applications that need to repeat the same task many time

with different sets of data

 The general structure of a four-segment

pipeline is as shown in fig;

 A task is the total operation performed

going through all segments of a pipeline

 The behavior of a pipeline can be illustrated with a space-time diagram

UNIT-V 3 KNREDDY

COMPUTER ORGANIZATION AND ARCHITECTURE

 This shows the segment utilization as a function of time

 Once the pipeline is

full, it takes only one

clock period to obtain

an output

 Consider a k-segment

pipeline with a clock

cycle time tp to execute n tasks

 The first task T1 requires time ktp to complete

 The remaining n – 1 tasks finish at the rate of one task per clock cycle and will be completed

after time (n – 1)tp

 The total time to complete the n tasks is [k + n – 1]tp

 The above example requires [4 + 6 – 1] clock cycles to finish

 Consider a non-pipeline unit that performs the same operation and takes tn time to complete

each task

 The total time to complete n tasks would be ntn

 The speedup of a pipeline processing over an equivalent non-pipeline processing is defined by
the ratio

 As the number of tasks increase, the speedup becomes

 If we assume that the time to process a task is the same in both circuits, tn =k tp

 Therefore, the theoretical maximum speedup that a pipeline can provide is k
 Example:

Cycle time = tp = 20 ns # of segments = k = 4 # of tasks = n = 100

 The pipeline system will take (k + n – 1)tp = (4 + 100 –1)20ns = 2060 ns

 Assuming that tn = ktp = 4 * 20 = 80 ns,

 A non-pipeline system requires nktp = 100 * 80 = 8000 ns

 The speedup ratio = 8000/2060 = 3.88

 The pipeline cannot operate at its maximum theoretical rate

 One reason is that the clock cycle must be chosen to equal the time delay of the segment with

the maximum propagation time

 Pipeline organization is applicable for arithmetic operations and fetching instructions

UNIT-V 4 KNREDDY

COMPUTER ORGANIZATION AND ARCHITECTURE

ARITHMETIC PIPELINE
 Pipeline arithmetic units are usually found in very high speed computers

 They are used to implement floating-point operations, multiplication of fixed-point numbers,

and similar computations encountered in scientific problems

 Example for floating-point addition and subtraction

 Inputs are two normalized floating-point binary numbers

X = A x 2a

Y = B x 2b

 A and B are two fractions that represent the

mantissas

 a and b are the exponents

 Four segments are used to perform the

following:

 Compare the exponents

 Align the mantissas

 Add or subtract the mantissas

 Normalize the result

 X = 0.9504 x 103 and Y = 0.8200 x 102

 The two exponents are subtracted in the first

segment to obtain 3-2=1

 The larger exponent 3 is chosen as the

exponent of the result

 Segment 2 shifts the mantissa of Y to the right

to obtain Y = 0.0820 x 103

 The mantissas are now aligned

 Segment 3 produces the sum Z = 1.0324 x 103

 Segment 4 normalizes the result by shifting the mantissa once to the right and incrementing the

exponent by one to obtain Z = 0.10324 x 104

 The comparator, shifter, adder-subtractor, incrementer, and decrementer in the floating-point

pipeline are implemented with combinational circuits.

 Suppose that the time delays of the four segments are t1 = 60 ns, t2 = 70 ns, t3 = 100 ns,

t4 = 80 ns, and the interface registers have a delay of tr = 10 ns. The clock cycle is chosen to be

tp = t3 + tr = 110 ns. An equivalent non-pipeline floating point adder-subtractor will have a

delay time tn = t1 + t2 + t3 + t4 + tr = 320ns. In this case the pipelined adder has a speedup of

32011 10 = 2. 9 over the non-pipelined adder.

UNIT-V 5 KNREDDY

COMPUTER ORGANIZATION AND ARCHITECTURE

INSTRUCTION PIPELINE
 An instruction pipeline reads consecutive instructions from memory while previous instructions

are being executed in other segments

 This causes the instruction fetch and execute phases to overlap and perform simultaneous

operations

 If a branch out of sequence occurs, the pipeline must be emptied and all the instructions that

have been read from memory after the branch instruction must be discarded

 Consider a computer with an instruction fetch unit and an instruction execution unit forming a

two segment pipeline

 A FIFO buffer can be used for the fetch segment

 Thus, an instruction stream can be placed in a queue, waiting for decoding and processing by

the execution segment

 This reduces the average access time to memory for reading instructions

 Whenever there is space in the buffer, the control unit initiates the next instruction fetch phase

 The following steps are needed to process each instruction:

1. Fetch the instruction from memory

2. Decode the instruction

3. Calculate the effective address

4. Fetch the operands from memory

5. Execute the instruction

6. Store the result in the proper place

 The pipeline may not perform at its maximum rate

due to:

 Different segments taking different times to operate

 Some segment being skipped for certain operations

 Memory access conflicts

Example: Four-segment instruction pipeline

 Assume that the decoding can be combined with

calculating the EA in one segment

 Assume that most of the instructions store the result

in a register so that the execution and storing of the

result can be combined in one segment

 While an instruction is being executed in segment 4, the next instruction in sequence is busy

fetching an operand from memory in segment 3. The effective address may be calculated in a

UNIT-V 6 KNREDDY

COMPUTER ORGANIZATION AND ARCHITECTURE

separate arithmetic circuit for the third instruction, and whenever the memory is available, the

fourth and all subsequent instructions can be fetched and placed in an instruction FIFO

 Up to four sub operations in the instruction cycle can overlap and up to four different

instructions can be in progress of being processed at the same time

 The following figure shows the operation of the instruction pipeline. The four segments are

represented in the diagram with an abbreviated symbol.

 FI: Fetch an instruction from memory

 DA:Decode the instruction and calculate the effective address of the operand

 FO: Fetch the operand

 EX: Execute the operation

 It is assumed that the processor has separate instruction and data memories

 Assume now that instruction 3 is a branch instruction. As soon as this instruction is decoded in

segment DA in step 4, the transfer from FI to DA of the other instructions is halted until the

branch instruction is executed in step 6. If the branch is taken, a new instruction is fetched in

step 7. If the branch is not taken, the instruction fetched previously in step 4 can be used. The

pipeline then continues until a new branch instruction is encountered.

 Another delay may occur in the pipeline if the EX segment needs to store the result of the

operation in the data memory while the FO segment needs to fetch an operand. In that case,

segment FO must wait until segment EX has finished its operation.

 Reasons for the pipeline to deviate from its normal operation are:

 Resource conflicts caused by access to memory by two segments at the same time. Most of

these instructions can be resolved by using separate instruction and data memories.

 Data dependency conflicts arise when an instruction depends on the result of a previous

instruction, but his result is not yet available

 Branch difficulties arise from program control instructions that may change the value of PC

UNIT-V 7 KNREDDY

COMPUTER ORGANIZATION AND ARCHITECTURE

Methods to handle data dependency:

 Hardware interlocks are circuits that detect instructions whose source operands are

destinations of prior instructions. Detection causes the hardware to insert the required delays

without altering the program sequence.

 Operand forwarding uses special hardware to detect a conflict and then avoid it by routing the

data through special paths between pipeline segments. This requires additional hardware paths

through multiplexers as well as the circuit to detect the conflict.

 Delayed load is a procedure that gives the responsibility for solving data conflicts to the

compiler. The compiler is designed to detect a data conflict and reorder the instructions as

necessary to delay the loading of the conflicting data by inserting no-operation instructions.

Methods to handle branch instructions:

 Prefetching the target instruction in addition to the next instruction allows either instruction

to be available.

 A branch target buffer (BTB) is an associative memory included in the fetch segment of the

branch instruction that stores the target instruction for a previously executed branch. It also

stores the next few instructions after the branch target instruction. This way, the branch

instructions that have occurred previously are readily available in the pipeline without

interruption.

 The loop buffer is a variation of the BTB. It is a small very high speed register file maintained

by the instruction fetch segment of the pipeline. Stores all branches within a loop segment.

 Branch prediction uses some additional logic to guess the outcome of a conditional branch

instruction before it is executed. The pipeline then begins prefetching instructions from the

predicted path.

 Delayed branch is used in most RISC processors so that the compiler rearranges the

instructions to delay the branch.

UNIT-V 8 KNREDDY

COMPUTER ORGANIZATION AND ARCHITECTURE

CHARACTERISTICS OF MULTIPROCESSORS
 A multiprocessor system is an interconnection of two or more CPUs with memory and input-

output equipment. The term "processor" in multiprocessor can mean either a central processing

unit (CPU) or an input-output processor (lOP).

 As it is most commonly defined, a multiprocessor system implies the existence of multiple

CPUs. Multiprocessors are classified as multiple instruction stream, multiple data stream

(MIMD) systems.

 There are some similarities between multiprocessor and multicomputer systems since both

support concurrent operations. The network consists of several autonomous computers that may

or may not communicate with each other. A multiprocessor system is controlled by one

operating system that provides interaction between processors and all the components of the

system cooperate in the solution of a problem.

 Although some large-scale computers include two or more CPUs in their overall system.

Microprocessors take very little physical space and are very inexpensive brings about the

feasibility of interconnecting a large number of microprocessors into one composite system.

 Very-large-scale integrated circuit technology has reduced the cost of computer components

 Multiprocessing improves the reliability of the system so that a failure or error in one part has a

limited effect on the rest of the system.

 The benefit derived from a multiprocessor organization is an improved system performance.

The system derives its high performance in one of two ways.

1. Multiple independent jobs can be made to operate in parallel.

2. A single job can be partitioned into multiple parallel tasks.

 Multiprocessors are classified by the way their memory is organized.

 A multiprocessor system with common shared memory is classified as a shared memory or

tightly coupled multiprocessor. Most commercial tightly coupled multiprocessors provide a

cache memory with each CPU.

 An alternative model of microprocessor is the distributed-memory or loosely coupled system.

Each processor element in a loosely coupled system has its own private local memory.

 Loosely coupled systems are most efficient when the interaction between tasks is minimal,

whereas tightly coupled systems can tolerate a higher degree of interaction between tasks.

UNIT-V 9 KNREDDY

COMPUTER ORGANIZATION AND ARCHITECTURE

INTERCONNECTION STRUCTURES
 The components that form a multiprocessor system are CPUs, lOPs connected to input-output

devices, and a memory unit that may be partitioned into a number of separate modules.

 The interconnection between the components can have different physical configurations,

depending on the number of transfer paths that are available between the processors and

memory in a shared memory system or among the processing elements in a loosely coupled

system.

 There are several physical forms available for establishing an interconnection network. Some of

these schemes are:

1. Time-shared common bus
2. Multiport memory
3. Crossbar switch
4. Multistage switching network
5. Hypercube system
Time-Shared Common Bus

 A common-bus multiprocessor system consists

of a number of processors connected through a

common path to a memory unit. A time-shared

common bus for five processors is shown in Fig.

 Only one processor can communicate with the memory or another processor at any given time.

 Transfer operations are conducted by the processor that is in control of the bus at the time.

 A command is issued to inform the destination unit what operation is to be performed. The

receiving unit recognizes its address in the bus and responds to the control signals from the

sender, after which the transfer is initiated.

 The transfer conflicts must be resolved by incorporating a bus controller that establishes

priorities among the requesting units.

 A single common-bus system is restricted to one transfer at a time.

 The processors in the system can be kept busy more often through the implementation of two or

more independent buses to permit multiple simultaneous bus transfers.

 A more economical implementation

of a dual bus structure is depicted in

Fig.

 Each local bus may be connected to a

CPU, an lOP, or any combination of

processors.

 A system bus controller links each local bus to a common system bus.

UNIT-V 10 KNREDDY

COMPUTER ORGANIZATION AND ARCHITECTURE

 The IO devices connected to the local lOP, as well as the local memory, are available to the

local processor.

 If an lOP is connected directly to the system bus, the IO devices attached to it may be made

available to all processors. Only one processor can communicate with the shared memory and

other common resources through the system bus at any given time.

 The other processors are kept busy communicating with their local memory and IO devices.

 Part of the local memory may be designed as a cache memory attached to the CPU

Multiport Memory

 A multiport memory system employs separate buses between each memory module and each

CPU. This is shown in Fig. for four CPUs and four memory modules (MMs).

 Each processor bus is connected to each memory

module. A processor bus consists of the address, data,

and control lines required to communicate with memory.

 The memory module is said to have four ports and each

port accommodates one of the buses. The module must

have internal control logic to determine which port will

have access to memory at any given time.

 Memory access conflicts are resolved by assigning fixed priorities to each memory port. The

priority for memory access associated with each processor may be established by the physical

port position that its bus occupies in each module.

 The advantage of the multi port memory organization is the high transfer rate that can be

achieved because of the multiple paths between processors and memory.

 The disadvantage is that it requires expensive memory control logic and a large number of

cables and connectors.

Crossbar Switch

 The crossbar switch organization consists of a number of

cross points that are placed at intersections between

processor buses and memory module paths.

 The small square in each cross point is a switch that

determines the path from a processor to a memory

module.

 Each switch point has control logic to set up the transfer

path between a processor and memory.

UNIT-V 11 KNREDDY

COMPUTER ORGANIZATION AND ARCHITECTURE

 It examines the address that is placed in the bus to determine whether its particular module is

being addressed.

 It also resolves multiple requests for access to the same memory module on a predetermined

priority basis.

 The functional design of a crossbar switch connected to one memory module is shown in figure.

 The circuit consists of multiplexers that select the

data address, and control from one CPU for

communication with the memory module.

 Priority levels are established by the arbitration

logic to select one CPU when two or more CPUs

attempt to access the same memory.

 A crossbar switch organization supports

simultaneous transfers from memory modules because there is a separate path associated with

each module.

 Multistage Switching Network

 The basic component of a multistage network is a two-

input, two-out interchange switch.

 The switch has the capability of connecting input A to

either of the outputs. Terminal B of the switch behaves in a

similar fashion. The switch also has the capability to

arbitrate between conflicting requests.

 Using the 2 x 2 switch as a building block, it is possible to

build multistage network to control the communication

between a number of sources and destinations.

 Consider the binary tree shown Fig. The two processors

P1 and P2 are connected through switches to eight

memory modules marked in binary from 000 through 111.

 The path from source to a destination is determined from

the binary bits of the destination number. The first bit of

the destination number determines the switch output in the first level. The second bit specifies

the output of the switch in the second level, and the third bit specifies the output of the switch in

the third level.

 Many different topologies have been proposed for multistage switching networks to control

processor-memory communication in a tightly coupled multiprocessor system or to control the

communication between the processing elements in a loosely coupled system.

UNIT-V 12 KNREDDY

COMPUTER ORGANIZATION AND ARCHITECTURE

 One such topology is the omega switching network

shown in Fig.

 In this configuration, there is exactly one path from

each source to any particular destination.

 Some request patterns, however, cannot be

connected simultaneously. For example, any two

sources cannot be connected simultaneously to destinations 000 and 001.

Hypercube Interconnection

 The hypercube or binary n-cube multiprocessor structure is a loosely coupled system composed

of N = 2n processors interconnected in an n-dimensional binary cube.

 Each processor forms a node of the cube.

 Each processor has direct communication paths to n other neighbor processors. These paths

correspond to the edges of the cube.

 Fig shows the hypercube structure for n = 1, 2, and 3.

 A one-cube structure has n = 1 and 2n = 2. It contains

two processors interconnected by a single path.

 A two-cube structure has n = 2 and 2n = 4. It contains

four nodes interconnected as a square.

 A three-cube structure has eight nodes interconnected as a cube.

 An n -cube structure has 2n nodes with a processor residing in each node. Each node is

assigned a binary address in such a way that the addresses of two neighbors differ in exactly

one bit position.

 Routing messages through an n-cube structure may take from one to n links from a source node

to a destination node.

 For example, in a three-cube structure, node 000 can communicate directly with node 001. It

must cross at least two links to communicate with 011 (from 000 to 001 to 011 or from 000 to

010 to 011).

 A routing procedure can be developed by computing the exclusive-OR of the source node

address with the destination node address. The resulting binary value will have 1 bits

corresponding to the axes on which the two nodes differ. The message is then sent along any

one of the axes.

 For example, in a three-cube structure, a message at 010 going to 001 produces an XOR of the

two addresses equal to 011 . The message can be sent along the second axis to 000 and then

through the third axis to 001.

UNIT-V 13 KNREDDY

COMPUTER ORGANIZATION AND ARCHITECTURE

 INTERPROCESSOR ARBITRATION

 Computer systems contain a number of buses at various levels to facilitate the transfer of

information between components. The CPU contains a number of internal buses for transferring

information between processor registers and ALU.

 A memory bus consists of lines for transferring data, address, and read/write information.

 An I/O bus is used to transfer information to and from input and output devices.

 A bus that connects major components in a multiprocessor system, such as CPUs, IOPs, and

memory, is called a system bus.

 The processors in a shared memory multiprocessor system request access to common memory

or other common resources through the system bus. If no other processor is currently utilizing

the bus, the requesting processor may be granted access immediately.

 Other processors may request the system bus at the same time. Arbitration must then be

performed to resolve this multiple contention for the shared resources. The arbitration logic

would be part of the system bus controller placed between the local bus and the system bus.

System Bus

 A typical system bus consists of approximately 100 signal lines. These lines are divided into

three functional groups: data, address, and control. In addition, there are power distribution

lines that supply power to the components.

 For example, the IEEE standard 796 multibus system has 16 data lines, 24 address lines, 26

control lines, and 20 power lines, for a total of 86 lines.

 Data transfers over the system bus may be synchronous or asynchronous.

 In a synchronous bus, each data item is transferred during a time slice known in advance to

both source and destination units. Synchronization is achieved by driving both units from a

common clock source.

 In an asynchronous bus, each data item being

transferred is accompanied by handshaking control

signals to indicate when the data are transferred from the

source and received by the destination

 The following table lists the 86 lines that are available in

the IEEE standard 796 multibus.

UNIT-V 14 KNREDDY

COMPUTER ORGANIZATION AND ARCHITECTURE

 Serial Arbitration Procedure

 Arbitration procedures service all processor requests on the basis of established priorities. A

hardware bus priority resolving technique can be established by means of a serial or parallel

connection of the units requesting control of the system bus.

 The serial priority resolving technique is obtained from a daisy-chain connection of bus

arbitration circuits similar to the priority interrupt logic.

 The processors connected to the system bus are assigned priority according to their position

along the priority control line.

 The device closest to the priority line is assigned the highest priority. When multiple devices

concurrently request the use of the bus, the device with the highest priority is granted access to

it.

 The processor whose arbiter has a PI = 1 and PO = 0 is the one that is given control of the

system bus

 A processor may be in the middle of a bus operation when a higher priority processor requests

the bus. The lower-priority processor must complete its bus operation before it relinquishes

control of the bus.

 When an arbiter receives control of the bus (because its PI = 1 and PO = 0) it examines the

busy line. If the line is inactive, it means that no other processor is using the bus. The arbiter

activates the busy line and its processor takes control of the bus. However, if the arbiter finds

the busy line active, it means that another processor is currently using the bus.

 The arbiter keeps examining the busy line while the lower-priority processor that lost control of

the bus completes its operation.

 When the bus busy line returns to its inactive state, the higher-priority arbiter enables the busy

line, and its corresponding processor can then conduct the required bus transfers.

UNIT-V 15 KNREDDY

COMPUTER ORGANIZATION AND ARCHITECTURE

Parallel Arbitration Logic

 The parallel bus arbitration technique uses an

external priority encoder and a decoder as shown in

Fig. Each bus arbiter in the parallel scheme has a bus

request output line and a bus acknowledge input line.

 Each arbiter enables the request line when its

processor is requesting access to the system bus. The

processor takes control of the bus if its acknowledge

input line is enabled.

Dynamic Arbitration Algorithms

 A dynamic priority algorithm gives the system the capability for changing the priority of the

devices while the system is in operation.

 The time slice algorithm allocates a fixed-length time slice of bus time that is offered

sequentially to each processor, in round-robin fashion. The service given to each system

component with this scheme is independent of its location along the bus.

 In a bus system that uses polling, the bus grant signal is replaced by a set of lines called poll

lines which are connected to all units. These lines are used by the bus controller to define an

address for each device connected to the bus.

 When a processor that requires access recognizes its address, it activates the bus busy line and

then accesses the bus. After a number of bus cycles, the polling process continues by choosing a

different processor. The polling sequence is normally programmable, and as a result, the

selection priority can be altered under program control.

 The least recently used (LRU) algorithm gives the highest priority to the requesting device

that has not used the bus for the longest interval. The priorities are adjusted after a number of

bus cycles according to the LRU algorithm.

 In the first-come, first-serve scheme, requests are served in the order received. To implement

this algorithm, the bus controller establishes a queue arranged according to the time that the bus

requests arrive. Each processor must wait for its turn to use the bus on a first-in, first-out

(FIFO) basis.

 The rotating daisy-chain procedure is a dynamic extension of the daisy chain algorithm. In this

scheme there is no central bus controller, and the priority line is connected from the priority-out

of the last device back to the priority-in of the first device in a closed loop.

 Each arbiter priority for a given bus cycle is determined by its position along the bus priority

line from the arbiter whose processor is currently controlling the bus. Once an arbiter releases

the bus, it has the lowest priority.

UNIT-V 16 KNREDDY

COMPUTER ORGANIZATION AND ARCHITECTURE

 INTERPROCESSOR COMMUNICATION AND SYNCHRONIZATION

 The various processors in a multiprocessor system must be provided with a facility for

communicating with each other. A communication path can be established through common

input-output channels.

 In a shared memory multiprocessor system, the most common procedure is to set aside a

portion of memory that is accessible to all processors. The primary use of the common memory

is to act as a message center similar to a mailbox, where each processor can leave messages for

other processors and pick up messages intended for it.

 The sending processor structures a request, a message, or a procedure, and places it in the

memory mailbox. Status bits residing in common memory are generally used to indicate the

condition of the mailbox, whether it has meaningful information, and for which processor it is

intended.

 The receiving processor can check the mailbox periodically to determine if there are valid

messages for it. The response time of this procedure can be time consuming since a processor

will recognize a request only when polling messages.

 A more efficient procedure is for the sending processor to alert the receiving processor directly

by means of an interrupt signal. This can be accomplished through a software-initiated

interprocessor interrupt by means of an instruction in the program of one processor which when

executed produces an external interrupt condition in a second processor. This alerts the

interrupted processor of the fact that a new message was inserted by the interrupting processor.

 In addition to shared memory, a multiprocessor system may have other shared resources. For

example, a magnetic disk storage unit connected to an lOP may be available to all CPUs. This

provides a facility for sharing of system programs stored in the disk.

 A communication path between two CPUs can be established through a link between two lOPs

associated with two different CPUs. This type of link allows each CPU to treat the other as an

IO device so that messages can be transferred through the IO path.

 To prevent conflicting use of shared resources by several processors there must be a provision

for assigning resources to processors. This task is given to the operating system. There are three

organizations that have been used in the design of operating system for multiprocessors:

master-slave configuration, separate operating system, and distributed operating system.

 In a master-slave mode, one processor, designated the master, always executes the operating

system functions. The remaining processors, denoted as slaves, do not perform operating

system functions. If a slave processor needs an operating system service, it must request it by

interrupting the master and waiting until the current program can be interrupted.

UNIT-V 17 KNREDDY

COMPUTER ORGANIZATION AND ARCHITECTURE

 In the separate operating system organization, each processor can execute the operating system

routines it needs. This organization is more suitable for loosely coupled systems where every

processor may have its own copy of the entire operating system.

 In the distributed operating system organization, the operating system routines are distributed

among the available processors. However, each particular operating system function is assigned

to only one processor at a time. This type of organization is also referred to as a floating

operating system since the routines float from one processor to another and the execution of the

routines may be assigned to different processors at different times.

 In a loosely coupled multiprocessor system the memory is distributed among the processors and

there is no shared memory for passing information.

 The communication between processors is by means of message passing through IO channels.

The communication is initiated by one processor calling a procedure that resides in the memory

of the processor with which it wishes to communicate. When the sending processor and

receiving processor name each other as a source and destination, a channel of communication is

established.

 A message is then sent with a header and various data objects used to communicate between

nodes. There may be a number of possible paths available to send the message between any two

nodes.

 The operating system in each node contains routing information indicating the alternative paths

that can be used to send a message to other nodes. The communication efficiency of the

interprocessor network depends on the communication routing protocol, processor speed, data

link speed, and the topology of the network.

Interprocessor Synchronization

 The instruction set of a multiprocessor contains basic instructions that are used to implement

communication and synchronization between cooperating processes.

 Communication refers to the exchange of data between different processes. For example,

parameters passed to a procedure in a different processor constitute interprocessor

communication.

 Synchronization refers to the special case where the data used to communicate between

processors is control information. Synchronization is needed to enforce the correct sequence of

processes and to ensure mutually exclusive access to shared writable data.

 Multiprocessor systems usually include various mechanisms to deal with the synchronization of

resources.

UNIT-V 18 KNREDDY

COMPUTER ORGANIZATION AND ARCHITECTURE

 Low-level primitives are implemented directly by the hardware. These primitives are the basic

mechanisms that enforce mutual exclusion for more complex mechanisms implemented in

software.

 A number of hardware mechanisms for mutual exclusion have been developed.

 One of the most popular methods is through the use of a binary semaphore. Mutual Exclusion

with a Semaphore

 A properly functioning multiprocessor system must provide a mechanism that will guarantee

orderly access to shared memory and other shared resources.

 This is necessary to protect data from being changed simultaneously by two or more processors.

This mechanism has been termed mutual exclusion. Mutual exclusion must be provided in a

multiprocessor system to enable one processor to exclude or lock out access to a shared

resource by other processors when it is in a critical section.

 A critical section is a program sequence that, once begun, must complete execution before

another processor accesses the same shared resource.

 A binary variable called a semaphore is often used to indicate whether or not a processor is

executing a critical section. A semaphore is a software controlled flag that is stored in a

memory location that all processors can access.

 When the semaphore is equal to 1, it means that a processor is executing a critical program, so

that the shared memory is not available to other processors.

 When the semaphore is equal to 0, the shared memory is available to any requesting processor.

Processors that share the same memory segment agree by convention not to use the memory

segment unless the semaphore is equal to 0, indicating that memory is available . They also

agree to set the semaphore to 1 when they are executing a critical section and to clear it to 0

when they are finished.

 Testing and setting the semaphore is itself a critical operation and must be performed as a single

indivisible operation. If it is not, two or more processors may test the semaphore simultaneously

and then each set it, allowing them to enter a critical section at the same time. This action would

allow simultaneous execution of critical section, which can result in erroneous initialization of

control parameters and a loss of essential information.

 A semaphore can be initialized by means of a test and set instruction in conjunction with a

hardware lock mechanism.

 A hardware lock is a processor generated signal that serves to prevent other processors from

using the system bus as long as the signal is active. The test-and-set instruction tests and sets a

semaphore and activates the lock mechanism during the time that the instruction is being

executed.

UNIT-V 19 KNREDDY

COMPUTER ORGANIZATION AND ARCHITECTURE

 This prevents other processors from changing the semaphore between the time that the

processor is testing it and the time that it is setting it. Assume that the semaphore is a bit in the

least significant position of a memory word whose address is symbolized by SEM.

 Let the mnemonic TSL designate the "test and set while locked" operation. The instruction

TSL SEM will be executed in two memory cycles (the first to read and the second to write)

without interference as follows:

R M[SEM] Test semaphore

M[SEM]1 Set semaphore

 The semaphore is tested by transferring its value to a processor register R and then it is set to 1.

The value in R determines what to do next.

 If the processor finds that R = 1, it knows that the semaphore was originally set. (The fact that it

is set again does not change the semaphore value.) That means that another processor is

executing a critical section, so the processor that checked the semaphore does not access the

shared memory.

 If R = 0, it means that the common memory (or the shared resource that the semaphore

represents) is available. The semaphore is set to 1 to prevent other processors from accessing

memory. The processor can now execute the critical section.

 The last instruction in the program must clear location SEM to zero to release the shared

resource to other processors. Note that the lock signal must be active during the execution of

the test-and-set instruction. It does not have to be active once the semaphore is set.

 Thus the lock mechanism prevents other processors from accessing memory while the

semaphore is being set. The semaphore itself, when set, prevents other processors from

accessing shared memory while one processor is executing a critical section.

UNIT-V 20 KNREDDY

COMPUTER ORGANIZATION AND ARCHITECTURE

