

UNIX BASICS 1

Unix - File Management

All data in UNIX is organized into files. All files are organized into directories. These directories

are organized into a tree-like structure called the filesystem.When you work with UNIX, one way

or another you spend most of your time working with files. This tutorial would teach you how to

create and remove files, copy and rename them, create links to them etc.

In UNIX there are three basic types of files:

1. Ordinary Files: An ordinary file is a file on the system that contains data, text, or program

instructions. In this tutorial, you look at working with ordinary files.

2. Directories: Directories store both special and ordinary files. For users familiar with

Windows or Mac OS, UNIX directories are equivalent to folders.

3. Special Files: Some special files provide access to hardware such as hard drives, CD-ROM

drives, modems, and Ethernet adapters. Other special files are similar to aliases or shortcuts

and enable you to access a single file using different names.

Listing Files:

To list the files and directories stored in the current directory. Use the following

command:[amrood]$ls

Here is the sample output of the above command:

[amrood]$ls

bin hosts lib res.03

ch07 hw1 pub test_results

ch07.bak hw2 res.01 users

docs hw3 res.02 work

The command ls supports the -1 option which would help you to get more information about the

listed files:

[amrood]$ls -l

total 1962188

drwxrwxr-x 2 amrood amrood 4096 Dec 25 09:59 uml

-rw-rw-r-- 1 amrood amrood 5341 Dec 25 08:38 uml.jpg

drwxr-xr-x 2 amrood amrood 4096 Feb 15 2006 univ

drwxr-xr-x 2 root root 4096 Dec 9 2007 urlspedia

UNIX BASICS 2

-rw-r--r-- 1 root root 276480 Dec 9 2007 urlspedia.tar

drwxr-xr-x 8 root root 4096 Nov 25 2007 usr

drwxr-xr-x 2 200 300 4096 Nov 25 2007 webthumb-1.01

-rwxr-xr-x 1 root root 3192 Nov 25 2007 webthumb.php

-rw-rw-r-- 1 amrood amrood 20480 Nov 25 2007 webthumb.tar

-rw-rw-r-- 1 amrood amrood 5654 Aug 9 2007 yourfile.mid

-rw-rw-r-- 1 amrood amrood 166255 Aug 9 2007 yourfile.swf

drwxr-xr-x 11 amrood amrood 4096 May 29 2007 zlib-1.2.3

[amrood]$

Here is the information about all the listed columns:

1. First Column: represents file type and premission given on the file. Below is the description

of all type of files.

2. Second Column: represents the number of memory blocks taken by the file or directory.

3. Third Column: represents owner of the file. This is the Unix user who created this file.

4. Fourth Column: represents group of the owner. Every Unux user would have an associated

group.

5. Fifth Column: represents file size in bytes.

6. Sixth Column: represents date and time when this file was created or modified last time.

7. Seventh Column: represents file or directory name.

In the ls -l listing example, every file line began with a d, -, or l. These characters indicate the type

of file that's listed.

Prefix Description

- Regular file, such as an ASCII text file, binary executable, or hard link.

b Block special file. Block input/output device file such as a physical hard drive.

c Character special file. Raw input/output device file such as a physical hard drive

d Directory file that contains a listing of other files and directories.

l Symbolic link file. Links on any regular file.

p Named pipe. A mechanism for interprocess communications

s Socket used for interprocess communication.

UNIX BASICS 3

Meta Characters:

Meta characters have special meaning in Unix. For example * and ? are metacharacters. We use *

to match 0 or more characters, a question mark ? matches with single character.

For Example:

[amrood]$ls ch*.doc

Displays all the files whose name start with ch and ends with .doc:

ch01-1.doc ch010.doc ch02.doc ch03-2.doc

ch04-1.doc ch040.doc ch05.doc ch06-2.doc

ch01-2.doc ch02-1.doc c

Here * works as meta character which matches with any character. If you want to display all the

files ending with just .doc then you can use following command:

[amrood]$ls *.doc

Hidden Files:

An invisible file is one whose first character is the dot or period character (.). UNIX programs

(including the shell) use most of these files to store configuration information.

Some common examples of hidden files include the files:

• .profile: the Bourne shell (sh) initialization script

• .kshrc: the Korn shell (ksh) initialization script

• .cshrc: the C shell (csh) initialization script

• .rhosts: the remote shell configuration file

To list invisible files, specify the -a option to ls:

[amrood]$ ls -a

. .profile docs lib test_results

.. .rhosts hosts pub users

.emacs bin hw1 res.01 work

.exrc ch07 hw2 res.02

.kshrc ch07.bak hw3 res.03

[amrood]$

• Single dot .: This represents current directory.

• Double dot ..: This represents parent directory.

UNIX BASICS 4

Note: I have put stars (*) just to show you the location where you would need to enter the current

and new passwords otherwise at your system, it would not show you any character when you would

type.

Creating Files:

You can use vi editor to create ordinary files on any Unix system. You simply need to give

following command:

[amrood]$ vi filename

Above command would open a file with the given filename. You would need to press key i to come

into edit mode. Once you are in edit mode you can start writing your content in the file as below:

This is unix file....I created it for the first time.....

I'm going to save this content in this file.

Once you are done, do the following steps:

• Press key esc to come out of edit mode.

• Press two keys Shift + ZZ together to come out of the file completely.

Now you would have a file created with filemame in the current directory.

[amrood]$ vi filename

[amrood]$

Editing Files:

You can edit an existing file using vi editor. We would cover this in detail in a separate tutorial. But

in short, you can open existing file as follows:

[amrood]$ vi filename

Once file is opened, you can come in edit mode by pressing key i and then you can edit file as you

like. If you want to move here and there inside a file then first you need to come out of edit mode

by pressing key esc and then you can use following keys to move inside a file:

• l key to move to the right side.

• h key to move to the left side.

• k key to move up side in the file.

• j key to move down side in the file.

So using above keys you can position your cursor where ever you want to edit. Once you are

positioned then you can use i key to come in edit mode. Edit the file, once you are done press esc

and finally two keys Shift + ZZ together to come out of the file completely.

Display Content of a File:

UNIX BASICS 5

You can use cat command to see the content of a file. Following is the simple example to see the

content of above created file:

[amrood]$ cat filename

This is unix file....I created it for the first time.....

I'm going to save this content in this file.

[amrood]$

You can display line numbers by using -b option along with cat command as follows:

[amrood]$ cat filename –b

1 This is unix file....I created it for the first time.....

2 I'm going to save this content in this file.

[amrood]$

Counting Words in a File:

You can use the wc command to get a count of the total number of lines, words, and characters

contained in a file. Following is the simple example to see the information about above created file:

[amrood]$ wc filename

2 19 103 filename

[amrood]$

Here is the detail of all the four columns:

1. First Column: represents total number of lines in the file.

2. Second Column: represents total number of words in the file.

3. Third Column: represents total number of bytes in the file. This is actual size of the file.

4. Fourth Column: represents file name.

You can give multiple files at a time to get the information about those file. Here is simple syntax:

[amrood]$ wc filename1 filename2 filename3

Copying Files:

To make a copy of a file use the cp command. The basic syntax of the command is:

[amrood]$ cp source_file destination_file

Following is the example to create a copy of existing file filename.

[amrood]$ cp filename copyfile

[amrood]$

UNIX BASICS 6

Now you would find one more file copyfile in your current directory. This file would be exactly

same as original file filename.

Renaming Files:

To change the name of a file use the mv command. Its basic syntax is:

[amrood]$ mv old_file new_file

Following is the example which would rename existing file filename to newfile:

[amrood]$ mv filename newfile

[amrood]$

The mv command would move existing file completely into new file. So in this case you would

fine only newfile in your current directory.

Deleting Files:

To delete an existing file use the rm command. Its basic syntax is:

[amrood]$ rm filename

Caution: It may be dangerous to delete a file because it may contain useful information. So be

careful while using this command. It is recommended to use -i option along with rm command.

Following is the example which would completely remove existing file filename:

[amrood]$ rm filename

[amrood]$

You can remove multiple files at a tile as follows:

[amrood]$ rm filename1 filename2 filename3

[amrood]$

Standard Unix Streams:Under normal circumstances every Unix program has three streams

(files) opened for it when it starts up:

1. stdin : This is referred to as standard input and associated file descriptor is 0. This is also

represented as STDIN. Unix program would read default input from STDIN.

2. stdout : This is referred to as standard output and associated file descriptor is 1. This is also

represented as STDOUT. Unix program would write default output at STDOUT

3. stderr : This is referred to as standard error and associated file descriptor is 2. This is also

represented as STDERR. Unix program would write all the error message at STDERR.

UNIX BASICS 7

Unix - File System Basics

A file system is a logical collection of files on a partition or disk. A partition is a container for

information and can span an entire hard drive if desired.

Your hard drive can have various partitions which usually contains only one file system, such as

one file system housing the / file system or another containing the /home file system.

One file system per partition allows for the logical maintenance and management of differing file

systems.

Everything in Unix is considered to be a file, including physical devices such as DVD-ROMs, USB

devices, floppy drives, and so forth.

Directory Structure:

Unix uses a hierarchical file system structure, much like an upside-down tree, with root (/) at the

base of the file system and all other directories spreading from there.A UNIX filesystem is a

collection of files and directories that has the following properties:

• It has a root directory (/) that contains other files and directories.

• Each file or directory is uniquely identified by its name, the directory in which it resides,

and a unique identifier, typically called an inode.

• By convention, the root directory has an inode number of 2 and the lost+found directory has

an inode number of 3. Inode numbers 0 and 1 are not used. File inode numbers can be seen

by specifying the -i option to ls command.

• It is self contained. There are no dependencies between one filesystem and any other.

The directories have specific purposes and generally hold the same types of information for easily

locating files. Following are the directories that exist on the major versions of Unix:

Directory Description

/
This is the root directory which should contain only the directories needed at the top

level of the file structure.

/bin This is where the executable files are located. They are available to all user.

/dev These are device drivers.

/etc
Supervisor directory commands, configuration files, disk configuration files, valid

user lists, groups, ethernet, hosts, where to send critical messages.

/lib Contains shared library files and sometimes other kernel-related files.

/boot Contains files for booting the system.

UNIX BASICS 8

/home Contains the home directory for users and other accounts.

/mnt
Used to mount other temporary file systems, such as cdrom and floppy for the CD-

ROM drive and floppy diskette drive, respectively

/proc
Contains all processes marked as a file by process number or other information that

is dynamic to the system.

/tmp Holds temporary files used between system boots

/usr
Used for miscellaneous purposes, or can be used by many users. Includes

administrative commands, shared files, library files, and others

/var
Typically contains variable-length files such as log and print files and any other type

of file that may contain a variable amount of data

/sbin
Contains binary (executable) files, usually for system administration. For example

fdisk and ifconfig utlities.

/kernel Contains kernel files

Navigating the File System:

Now that you understand the basics of the file system, you can begin navigating to the files you

need. The following are commands you'll use to navigate the system:

Command Description

cat filename Displays a filename.

cd dirname Moves you to the directory identified.

cp file1 file2 Copies one file/directory to specified location.

file filename Identifies the file type (binary, text, etc).

find filename dir Finds a file/directory.

head filename Shows the beginning of a file.

less filename Browses through a file from end or beginning.

ls dirname Shows the contents of the directory specified.

mkdir dirname Creates the specified directory.

UNIX BASICS 9

more filename Browses through a file from beginning to end.

mv file1 file2 Moves the location of or renames a file/directory.

pwd Shows the current directory the user is in.

rm filename Removes a file.

rmdir dirname Removes a directory.

tail filename Shows the end of a file.

touch filename Creates a blank file or modifies an existing file.s attributes.

whereis filename Shows the location of a file.

which filename Shows the location of a file if it is in your PATH.

You can use Manpage Help to check complete syntax for each command mentioned here.

The df Command:

The first way to manage your partition space is with the df (disk free) command. The command df -

k (disk free) displays the disk space usage in kilobytes, as shown below:

[amrood]$df -k

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/vzfs 10485760 7836644 2649116 75% /

/devices 0 0 0 0% /devices

[amrood]$

Some of the directories, such as /devices, shows 0 in the kbytes, used, and avail columns as well as

0% for capacity. These are special (or virtual) file systems, and although they reside on the disk

under /, by themselves they do not take up disk space.

The df -k output is generally the same on all Unix systems. Here's what it usually includes:

Column Description

Filesystem The physical file system name.

kbytes Total kilobytes of space available on the storage medium.

used Total kilobytes of space used (by files).

UNIX BASICS 10

avail Total kilobytes available for use.

capacity Percentage of total space used by files.

Mounted on What the file system is mounted on.

You can use the -h (human readable) option to display the output in a format that shows the size in

easier-to-understand notation.

The du Command:

The du (disk usage) command enables you to specify directories to show disk space usage on a

particular directory.

This command is helpful if you want to determine how much space a particular directory is taking.

Following command would display number of blocks consumed by each directory. A single block

may take either 512 Bytes or 1 Kilo Byte depending on your system.

[amrood]$du /etc

10 /etc/cron.d

126 /etc/default

6 /etc/dfs

...

[amrood]$

The -h option makes the output easier to comprehend:

[amrood]$du -h /etc

5k /etc/cron.d

63k /etc/default

3k /etc/dfs

...

[amrood]$

Mounting the File System:

A file system must be mounted in order to be usable by the system. To see what is currently

mounted (available for use) on your system, use this command:

[amrood]$ mount

/dev/vzfs on / type reiserfs (rw,usrquota,grpquota)

proc on /proc type proc (rw,nodiratime)

devpts on /dev/pts type devpts (rw)

UNIX BASICS 11

[amrood]$

The /mnt directory, by Unix convention, is where temporary mounts (such as CD-ROM drives,

remote network drives, and floppy drives) are located. If you need to mount a file system, you can

use the mount command with the following syntax:

mount -t file_system_type device_to_mount directory_to_mount_to

For example, if you want to mount a CD-ROM to the directory /mnt/cdrom, for example, you can

type:

[amrood]$ mount -t iso9660 /dev/cdrom /mnt/cdrom

This assumes that your CD-ROM device is called /dev/cdrom and that you want to mount it to

/mnt/cdrom. Refer to the mount man page for more specific information or type mount -h at the

command line for help information.

After mounting, you can use the cd command to navigate the newly available file system through

the mountpoint you just made.

Unmounting the File System:

To unmount (remove) the file system from your system, use the umount command by identifying

the mountpoint or device

For example, to unmount cdrom, use the following command:

[amrood]$ umount /dev/cdrom

The mount command enables you to access your file systems, but on most modern Unix systems,

the automount function makes this process invisible to the user and requires no intervention.

User and Group Quotas:

User and group quotas provide the mechanisms by which the amount of space used by a single user

or all users within a specific group can be limited to a value defined by the administrator.

Quotas operate around two limits that allow the user to take some action if the amount of space or

number of disk blocks start to exceed the administrator defined limits:

• Soft Limit: If the user exceeds the limit defined, there is a grace period that allows the user

to free up some space.

• Hard Limit: When the hard limit is reached, regardless of the grace period, no further files

or blocks can be allocated.

UNIX BASICS 12

There are a number of commands to administer quotas:

Command Description

quota Displays disk usage and limits for a user of group.

edquota
This is a quota editor. Users or Groups quota can be edited using this

command.

quotacheck Scan a filesystem for disk usage, create, check and repair quota files

setquota This is also a command line quota editor.

quotaon
This announces to the system that disk quotas should be enabled on one or

more filesystems.

quotaoff
This announces to the system that disk quotas should be disabled off one

or more filesystems.

repquota
This prints a summary of the disc usage and quotas for the specified file

systems

Unix - Regular Expressions with SED

A regular expression is a string that can be used to describe several sequences of characters.

Regular expressions are used by several different Unix commands, including ed, sed, awk, grep,

and, to a more limited extent, vi.

This tutorial would teach you how to use regular expression along with sed.

Here sed stands for stream editor is a stream oriented editor which was created exclusively for

executing scripts. Thus all the input you feed into it passes through and goes to STDOUT and it

does not change the input file.

Invoking sed:

Before we start, let us take make sure you have a local copy of /etc/passwd text file to work with

sed.

As mentioned previously, sed can be invoked by sending data through a pipe to it as follows:

UNIX BASICS 13

[amrood]$ cat /etc/passwd | sed

Usage: sed [OPTION]... {script-other-script} [input-file]...

 -n, --quiet, --silent suppress automatic printing of pattern space

 -e script, --expression=script

...............................

The cat command dumps the contents of /etc/passwd to sed through the pipe into sed's pattern

space. The pattern space is the internal work buffer that sed uses to do its work.

The sed Genral Syntax:

Following is the general syntax for sed

/pattern/action

Here, pattern is a regular expression, and action is one of the commands given in the following

table. If pattern is omitted, action is performed for every line as we have seen above.

The slash characters (/) that surround the pattern are required because they are used as delimiters.

Range Description

p Prints the line

d Deletes the line

s/pattern1/pattern2/ Substitutes the first occurrence of pattern1 with pattern2.

Deleting All Lines with sed:

Invoke sed again, but this time tell sed to use the editing command delete line, denoted by the

single letter d:

[amrood]$ cat /etc/passwd | sed 'd'

[amrood]$

Instead of invoking sed by sending a file to it through a pipe, you can instruct sed to read the data

from a file, as in the following example.

The following command does exactly the same thing as the previous Try It Out, without the cat

command:

[amrood]$ sed -e 'd' /etc/passwd

[amrood]$

UNIX BASICS 14

The sed Addresses:

Sed also understands something called addresses. Addresses are either particular locations in a file

or a range where a particular editing command should be applied. When sed encounters no

addresses, it performs its operations on every line in the file.

The following command adds a basic address to the sed command you've been using:

[amrood]$ cat /etc/passwd | sed '1d' |more

daemon:x:1:1:daemon:/usr/sbin:/bin/sh

bin:x:2:2:bin:/bin:/bin/sh

sys:x:3:3:sys:/dev:/bin/sh

sync:x:4:65534:sync:/bin:/bin/sync

games:x:5:60:games:/usr/games:/bin/sh

man:x:6:12:man:/var/cache/man:/bin/sh

mail:x:8:8:mail:/var/mail:/bin/sh

news:x:9:9:news:/var/spool/news:/bin/sh

backup:x:34:34:backup:/var/backups:/bin/sh

[amrood]$

Notice that the number 1 is added before the delete edit command. This tells sed to perform the

editing command on the first line of the file. In this example, sed will delete the first line of

/etc/password and print the rest of the file.

The sed Address Ranges:

So what if you want to remove more than one line from a file? You can specify an address range

with sed as follows:

[amrood]$ cat /etc/passwd | sed '1, 5d' |more

games:x:5:60:games:/usr/games:/bin/sh

man:x:6:12:man:/var/cache/man:/bin/sh

mail:x:8:8:mail:/var/mail:/bin/sh

news:x:9:9:news:/var/spool/news:/bin/sh

backup:x:34:34:backup:/var/backups:/bin/sh

[amrood]$

Above command would be applied on all the lines starting from 1 through 5. So it deleted first five

lines.

UNIX BASICS 15

Try out the following address ranges:

Range Description

'4,10d' Lines starting from 4th till 10th are deleted

'10,4d' Only 10th line is deleted, because sed does not work in reverse direction.

'4,+5d'
This will match line 4 in the file, delete that line, continue to delete the next five

lines, and then cease its deletion and print the rest

'2,5!d' This will deleted everything except starting from 2nd till 5th line.

'1~3d'
This deletes the first line, steps over the next three lines, and then deletes the fourth

line. Sed continues applying this pattern until the end of the file.

'2~2d'
This tells sed to delete the second line, step over the next line, delete the next line,

and repeat until the end of the file is reached.

'4,10p' Lines starting from 4th till 10th are printed

'4,d' This would generate syntax error.

',10d' This would also generate syntax error.

Note: While using p action, you should use -n option to avoid repetition of line printing. Check the

difference in betweek following two commands:

[amrood]$ cat /etc/passwd | sed -n '1,3p'

Check the above command without -n as follows:

[amrood]$ cat /etc/passwd | sed '1,3p'

The Substitution Command:

The substitution command, denoted by s, will substitute any string that you specify with any other

string that you specify.

To substitute one string with another, you need to have some way of telling sed where your first

string ends and the substitution string begins. This is traditionally done by bookending the two

strings with the forward slash (/) character.

The following command substitutes the first occurrence on a line of the string root with the string

amrood.

UNIX BASICS 16

[amrood]$ cat /etc/passwd | sed 's/root/amrood/'

amrood:x:0:0:root user:/root:/bin/sh

daemon:x:1:1:daemon:/usr/sbin:/bin/sh

..........................

It is very important to note that sed substitutes only the first occurrence on a line. If the string root

occurs more than once on a line only the first match will be replaced.

To tell sed to do a global substitution, add the letter g to the end of the command as follows:

[amrood]$ cat /etc/passwd | sed 's/root/amrood/g'

amrood:x:0:0:amrood user:/amrood:/bin/sh

daemon:x:1:1:daemon:/usr/sbin:/bin/sh

bin:x:2:2:bin:/bin:/bin/sh

sys:x:3:3:sys:/dev:/bin/sh

...........................

Substitution Flags:

There are a number of other useful flags that can be passed in addition to the g flag, and you can

specify more than one at a time.

Flag Description

g Replace all matches, not just the first match.

NUMBER Replace only NUMBERth match.

p If substitution was made, print pattern space.

w FILENAME If substitution was made, write result to FILENAME.

I or i Match in a case-insensitive manner.

M or m

In addition to the normal behavior of the special regular expression characters

^ and $, this flag causes ^ to match the empty string after a newline and $ to

match the empty string before a newline.

Using an Alternative String Separator:

You may find yourself having to do a substitution on a string that includes the forward slash

character. In this case, you can specify a different separator by providing the designated character

after the s.

UNIX BASICS 17

[amrood]$ cat /etc/passwd | sed 's:/root:/amrood:g'

amrood:x:0:0:amrood user:/amrood:/bin/sh

daemon:x:1:1:daemon:/usr/sbin:/bin/sh

In the above example we have used : as delimeter instead of slash / because we were trying to

search /root instead of simple root.

Replacing with Empty Space:

Use an empty substitution string to delete the root string from the /etc/passwd file entirely:

[amrood]$ cat /etc/passwd | sed 's/root//g'

:x:0:0::/:/bin/sh

daemon:x:1:1:daemon:/usr/sbin:/bin/sh

Address Substitution:

If you want to substitute the string sh with the string quiet only on line 10, you can specify it as

follows:

[amrood]$ cat /etc/passwd | sed '10s/sh/quiet/g'

root:x:0:0:root user:/root:/bin/sh

daemon:x:1:1:daemon:/usr/sbin:/bin/sh

bin:x:2:2:bin:/bin:/bin/sh

sys:x:3:3:sys:/dev:/bin/sh

sync:x:4:65534:sync:/bin:/bin/sync

games:x:5:60:games:/usr/games:/bin/sh

man:x:6:12:man:/var/cache/man:/bin/sh

mail:x:8:8:mail:/var/mail:/bin/sh

news:x:9:9:news:/var/spool/news:/bin/sh

backup:x:34:34:backup:/var/backups:/bin/quiet

Similarly, to do an address range substitution, you could do something like the following:

[amrood]$ cat /etc/passwd | sed '1,5s/sh/quiet/g'

root:x:0:0:root user:/root:/bin/quiet

daemon:x:1:1:daemon:/usr/sbin:/bin/quiet

bin:x:2:2:bin:/bin:/bin/quiet

sys:x:3:3:sys:/dev:/bin/quiet

sync:x:4:65534:sync:/bin:/bin/sync

games:x:5:60:games:/usr/games:/bin/sh

UNIX BASICS 18

man:x:6:12:man:/var/cache/man:/bin/sh

mail:x:8:8:mail:/var/mail:/bin/sh

news:x:9:9:news:/var/spool/news:/bin/sh

backup:x:34:34:backup:/var/backups:/bin/sh

As you can see from the output, the first five lines had the string sh changed to quiet, but the rest of

the lines were left untouched.

The Matching Command:

You would use p option along with -n option to print all the matching lines as follows:

[amrood]$ cat testing | sed -n '/root/p'

root:x:0:0:root user:/root:/bin/sh

[root@ip-72-167-112-17 amrood]# vi testing

root:x:0:0:root user:/root:/bin/sh

daemon:x:1:1:daemon:/usr/sbin:/bin/sh

bin:x:2:2:bin:/bin:/bin/sh

sys:x:3:3:sys:/dev:/bin/sh

sync:x:4:65534:sync:/bin:/bin/sync

games:x:5:60:games:/usr/games:/bin/sh

man:x:6:12:man:/var/cache/man:/bin/sh

mail:x:8:8:mail:/var/mail:/bin/sh

news:x:9:9:news:/var/spool/news:/bin/sh

backup:x:34:34:backup:/var/backups:/bin/sh

Using Regular Expression:

While matching pattern, you can use regular expression which provides more flexibility.

Check following example which matches all the lines starting with daemon and then deleting them:

[amrood]$ cat testing | sed '/^daemon/d'

root:x:0:0:root user:/root:/bin/sh

bin:x:2:2:bin:/bin:/bin/sh

sys:x:3:3:sys:/dev:/bin/sh

sync:x:4:65534:sync:/bin:/bin/sync

games:x:5:60:games:/usr/games:/bin/sh

man:x:6:12:man:/var/cache/man:/bin/sh

mail:x:8:8:mail:/var/mail:/bin/sh

UNIX BASICS 19

news:x:9:9:news:/var/spool/news:/bin/sh

backup:x:34:34:backup:/var/backups:/bin/sh

Following is the example which would delete all the lines ending with sh:

[amrood]$ cat testing | sed '/sh$/d'

sync:x:4:65534:sync:/bin:/bin/sync

The following table lists four special characters that are very useful in regular expressions.

Character Description

^ Matches the beginning of lines.

$ Matches the end of lines.

. Matches any single character.

* Matches zero or more occurrences of the previous character

[chars]
Matches any one of the characters given in chars, where chars is a sequence of

characters. You can use the - character to indicate a range of characters.

Matching Characters:

Look at a few more expressions to demonstrate the use of the metacharacters. For example, the

following pattern:

Expression Description

/a.c/
Matches lines that contain strings such as a+c, a-c, abc, match, and a3c,

whereas the pattern

/a*c/ Matches the same strings along with strings such as ace, yacc, and arctic.

/[tT]he/ Matches the string The and the:

/^$/ Matches Blank lines

/^.*$/ Matches an entire line whatever it is.

/ */ Matches one or more spaces

/^$/ Matches Blank lines

Following table shows some frequently used sets of characters:

UNIX BASICS 20

Set Description

[a-z] Matches a single lowercase letter

[A-Z] Matches a single uppercase letter

[a-zA-Z] Matches a single letter

[0-9] Matches a single number

[a-zA-Z0-9] Matches a single letter or number

Character Class Keywords:

Some special keywords are commonly available to regexps, especially GNU utilities that employ

regexps. These are very useful for sed regular expressions as they simplify things and enhance

readability.

For example, the characters a through z as well as the characters A through Z constitute one such

class of characters that has the keyword [[:alpha:]]

Using the alphabet character class keyword, this command prints only those lines in the

/etc/syslog.conf file that start with a letter of the alphabet:

[amrood]$ cat /etc/syslog.conf | sed -n '/^[[:alpha:]]/p'

authpriv.* /var/log/secure

mail.* -/var/log/maillog

cron.* /var/log/cron

uucp,news.crit /var/log/spooler

local7.* /var/log/boot.log

The following table is a complete list of the available character class keywords in GNU sed.

Character Class Description

[[:alnum:]] Alphanumeric [a-z A-Z 0-9]

[[:alpha:]] Alphabetic [a-z A-Z]

[[:blank:]] Blank characters (spaces or tabs)

[[:cntrl:]] Control characters

[[:digit:]] Numbers [0-9]

[[:graph:]] Any visible characters (excludes whitespace)

UNIX BASICS 21

[[:lower:]] Lowercase letters [a-z]

[[:print:]] Printable characters (noncontrol characters)

[[:punct:]] Punctuation characters

[[:space:]] Whitespace

[[:upper:]] Uppercase letters [A-Z]

[[:xdigit:]] Hex digits [0-9 a-f A-F]

Aampersand Referencing:

The sed metacharacter & represents the contents of the pattern that was matched. For instance, say

you have a file called phone.txt full of phone numbers, such as the following:

5555551212

5555551213

5555551214

6665551215

6665551216

7775551217

You want to make the area code (the first three digits) surrounded by parentheses for easier

reading. To do this, you can use the ampersand replacement character, like so:

$ sed -e 's/^[[:digit:]][[:digit:]][[:digit:]]/(&)/g' phone.txt

(555)5551212

(555)5551213

(555)5551214

(666)5551215

(666)5551216

(777)5551217

Here in pattern part you are matching first 3 digits and then using & you are replacing those 3 digits

with surrounding parentheses.

Using Multiple sed Commands:

You can use multiple sed commands in a single sed command as follows:

$ sed -e 'command1' -e 'command2' ... -e 'commandN' files

UNIX BASICS 22

Here command1 through commandN are sed commands of the type discussed previously. These

commands are applied to each of the lines in the list of files given by files.

Using the same mechanism, we can write above phone number example as follows:

$ sed -e 's/^[[:digit:]]\{3\}/(&)/g' \

 -e 's/)[[:digit:]]\{3\}/&-/g' phone.txt

(555)555-1212

(555)555-1213

(555)555-1214

(666)555-1215

(666)555-1216

(777)555-1217

Note: In the above example, instead of repeating the character class keyword [[:digit:]] three times,

you replaced it with \{3\}, which means to match the preceding regular expression three times.

Here I used \ to give line break you should remove this before running this command.

Back References:

The ampersand metacharacter is useful, but even more useful is the ability to define specific

regions in a regular expressions so you can reference them in your replacement strings. By defining

specific parts of a regular expression, you can then refer back to those parts with a special reference

character.

To do back references, you have to first define a region and then refer back to that region. To define

a region you insert backslashed parentheses around each region of interest. The first region that you

surround with backslashes is then referenced by \1, the second region by \2, and so on.

Assuming phone.txt has the following text:

(555)555-1212

(555)555-1213

(555)555-1214

(666)555-1215

(666)555-1216

(777)555-1217

Now try the following command:

$ cat phone.txt | sed 's/\(.*)\)\(.*-\)\(.*$\)/Area \

 code: \1 Second: \2 Third: \3/'

UNIX BASICS 23

Area code: (555) Second: 555- Third: 1212

Area code: (555) Second: 555- Third: 1213

Area code: (555) Second: 555- Third: 1214

Area code: (666) Second: 555- Third: 1215

Area code: (666) Second: 555- Third: 1216

Area code: (777) Second: 555- Third: 1217

Note:In the above example each regular expression inside the parenthesis would be back referenced

by \1, \2 and so on. Here I used \ to give line break you should remove this before running this

command.

Unix - User Administration

There are three types of accounts on a Unix system:

1. Root account: This is also called superuser and would have complete and unfettered

control of the system. A superuser can run any commands without any restriction. This user

should be assumed as a system administrator.

2. System accounts: System accounts are those needed for the operation of system-specific

components for example mail accounts and the sshd accounts. These accounts are usually

needed for some specific function on your system, and any modifications to them could

adversely affect the system.

3. User accounts: User accounts provide interactive access to the system for users and groups

of users. General users are typically assigned to these accounts and usually have limited

access to critical system files and directories.

Unix supports a concept of Group Account which logically groups a number of accounts. Every

account would be a part of any group account. Unix groups plays important role in handling file

permissions and process management.

Managing Users and Groups:

There are three main user administration files:

1. /etc/passwd: Keeps user account and password information. This file holds the majority of

information about accounts on the Unix system.

2. /etc/shadow: Holds the encrypted password of the corresponding account. Not all the

system support this file.

3. /etc/group: This file contains the group information for each account.

4. /etc/gshadow: This file contains secure group account information.

Check all the above files using cat command.

UNIX BASICS 24

Following are commands available on the majority of Unix systems to create and manage accounts

and groups:

Command Description

useradd Adds accounts to the system.

usermod Modifies account attributes.

userdel Deletes accounts from the system.

groupadd Adds groups to the system.

groupmod Modifies group attributes.

groupdel Removes groups from the system.

You can use Manpage Help to check complete syntax for each command mentioned here.

Create a Group

You would need to create groups before creating any account otherwise you would have to use

existing groups at your system. You would have all the groups listed in /etc/groups file.

All the default groups would be system account specific groups and it is not recommended to use

them for ordinary accounts. So following is the syntax to create a new group account:

 groupadd [-g gid [-o]] [-r] [-f] groupname

Here is the detail of the parameters:

Option Description

-g GID The numerical value of the group's ID.

-o This option permits to add group with non-unique GID

-r This flag instructs groupadd to add a system account

-f

This option causes to just exit with success status if the specified group

already exists. With -g, if specified GID already exists, other (unique)

GID is chosen

groupname Actaul group name to be created.

If you do not specify any parameter then system would use default values.

Following example would create developers group with default values, which is very much

acceptable for most of the administrators.

UNIX BASICS 25

[amrood]$ groupadd developers

Modify a Group:

To modify a group, use the groupmod syntax:

[amrood]$ groupmod -n new_modified_group_name old_group_name

To change the developers_2 group name to developer, type:

[amrood]$ groupmod -n developer developer_2

Here is how you would change the financial GID to 545:

[amrood]$ groupmod -g 545 developer

Delete a Group:

To delete an existing group, all you need are the groupdel command and the group name. To delete

the financial group, the command is:

[amrood]$ groupdel developer

This removes only the group, not any files associated with that group. The files are still accessible

by their owners.

Create an Account

Let us see how to create a new account on your Unix system. Following is the syntax to create a

user's account:

useradd -d homedir -g groupname -m -s shell -u userid accountname

Here is the detail of the parameters:

Option Description

-d homedir Specifies home directory for the account.

-g groupname Specifies a group account for this account.

-m Creates the home directory if it doesn't exist.

-s shell Specifies the default shell for this account.

-u userid You can specify a user id for this account.

accountname Actual account name to be created

UNIX BASICS 26

If you do not specify any parameter then system would use default values. The useradd command

modifies the /etc/passwd, /etc/shadow, and /etc/group files and creates a home directory.

Following is the example which would create an account mcmohd setting its home directory to

/home/mcmohd and group as developers. This user would have Korn Shell assigned to it.

[amrood]$ useradd -d /home/mcmohd -g developers -s /bin/ksh mcmohd

Before issuing above command, make sure you already have developers group created using

groupadd command.

Once an account is created you can set its password using the passwd command as follows:

[amrood]$ passwd mcmohd20

Changing password for user mcmohd20.

New UNIX password:

Retype new UNIX password:

passwd: all authentication tokens updated successfully.

When you type passwd accountname, it gives you option to change the password provided you are

super user otherwise you would be able to change just your password using the same command but

without specifying your account name.

Modify an Account:

The usermod command enables you to make changes to an existing account from the command

line. It uses the same arguments as the useradd command, plus the -l argument, which allows you to

change the account name.

For example, to change the account name mcmohd to mcmohd20 and to change home directory

accordingly, you would need to issue following command:

[amrood]$ usermod -d /home/mcmohd20 -m -l mcmohd mcmohd20

Delete an Account:

The userdel command can be used to delete an existing user. This is a very dangerous command if

not used with caution.

There is only one argument or option available for the command: .r, for removing the account's

home directory and mail file.

For example, to remove account mcmohd20, you would need to issue following command:

[amrood]$ userdel -r mcmohd20

If you want to keep her home directory for backup purposes, omit the -r option. You can remove

the home directory as needed at a later time.

UNIX BASICS 27

Unix - System Performance

The purpose of this tutorial is to introduce the performance analyst to some of the free tools

available to monitor and manage performance on UNIX systems, and to provide a guideline on how

to diagnose and fix performance problems in Unix environment.

UNIX has following major resource types that need to be monitored and tuned:

• CPU

• Memory

• Disk space

• Communications lines

• I/O Time

• Network Time

• Applications programs

Peformance Components:

There are following major five component where total system time goes:

Component Description

User state CPU

The actual amount of time the CPU spends running the users

program in the user state. It includes time spent executing

library calls, but does not include time spent in the kernel on its

behalf.

System state CPU

This is the amount of time the CPU spends in the system state

on behalf of this program. All I/O routines require kernel

services. The programmer can affect this value by the use of

blocking for I/O transfers.

I/O Time and Network Time
These are the amount of time spent moving data and servicing

I/O requests

Virtual Memory Performance This includes context switching and swapping.

Application Program

Time spent running other programs - when the system is not

servicing this application because another application currently

has the CPU.

UNIX BASICS 28

Peformance Tools:

Unix provides following important tools to measure and fine tune Unix system performance:

Command Description

nice/renice Run a program with modified scheduling priority

netstat
Print network connections, routing tables, interface statistics,

masquerade connections, and multicast memberships

time Time a simple command or give resource usage

uptime System Load Average

ps Report a snapshot of the current processes.

vmstat Report virtual memory statistics

gprof Display call graph profile data

prof Process Profiling

top Display system tasks

Unix - System Logging

Unix systems have a very flexible and powerful logging system, which enables you to record

almost anything you can imagine and then manipulate the logs to retrieve the information you

require.

Many versions of UNIX provide a general-purpose logging facility called syslog. Individual

programs that need to have information logged send the information to syslog.

Unix syslog is a host-configurable, uniform system logging facility. The system uses a centralized

system logging process that runs the program /etc/syslogd or /etc/syslog.

The operation of the system logger is quite straightforward. Programs send their log entries to

syslogd, which consults the configuration file /etc/syslogd.conf or /etc/syslog and, when a match is

found, writes the log message to the desired log file.

There are four basic syslog terms that you should understand:

UNIX BASICS 29

Term Description

Facility
The identifier used to describe the application or process that

submitted the log message. Examples are mail, kernel, and ftp.

Priority

An indicator of the importance of the message. Levels are

defined within syslog as guidelines, from debugging

information to critical events.

Selector
A combination of one or more facilities and levels. When an

incoming event matches a selector, an action is performed.

Action

What happens to an incoming message that matches a selector.

Actions can write the message to a log file, echo the message

to a console or other device, write the message to a logged in

user, or send the message along to another syslog server.

Syslog Facilities:

Here are the available facilities for the selector. Not all facilities are present on all versions of

UNIX.

Facility Description

Auth
Activity related to requesting name and password (getty, su,

login)

Authpriv
Same as auth but logged to a file that can only be read by

selected users

Console
Used to capture messages that would generally be directed to

the system console

cron Messages from the cron system scheduler

daemon System daemon catch-all

ftp Messages relating to the ftp daemon

kern Kernel messages

local0.local7 Local facilities defined per site

lpr Messages from the line printing system

UNIX BASICS 30

mail Messages relating to the mail system

mark Pseudo event used to generate timestamps in log files

news Messages relating to network news protocol (nntp)

ntp Messages relating to network time protocol

user Regular user processes

uucp UUCP subsystem

Syslog Priorities:

The syslog priorities are summarized in the following table:

Priority Description

emerg
Emergency condition, such as an imminent system crash,

usually broadcast to all users

alert
Condition that should be corrected immediately, such as a

corrupted system database

crit Critical condition, such as a hardware error

err Ordinary error

warning Warning

notice
Condition that is not an error, but possibly should be handled

in a special way

info Informational message

debug Messages that are used when debugging programs

none Pseudo level used to specify not to log messages.

The combination of facilities and levels enables you to be discerning about what is logged and

where that information goes.

As each program sends its messages dutifully to the system logger, the logger makes decisions on

what to keep track of and what to discard based on the levels defined in the selector.

When you specify a level, the system will keep track of everything at that level and higher.

The /etc/syslog.conf file:

UNIX BASICS 31

The /etc/syslog.conf file controls where messages are logged. A typical syslog.conf file might look

like this:

*.err;kern.debug;auth.notice /dev/console

daemon,auth.notice /var/log/messages

lpr.info /var/log/lpr.log

mail.* /var/log/mail.log

ftp.* /var/log/ftp.log

auth.* @prep.ai.mit.edu

auth.* root,amrood

netinfo.err /var/log/netinfo.log

install.* /var/log/install.log

*.emerg *

*.alert |program_name

mark.* /dev/console

Each line of the file contains two parts:

• A message selector that specifies which kind of messages to log. For example, all error

messages or all debugging messages from the kernel.

• An action field that says what should be done with the message. For example, put it in a file

or send the message to a user's terminal.

Following are the notable points for the above configuration:

• Message selectors have two parts: a facility and a priority. For example, kern.debug selects

all debug messages (the priority) generated by the kernel (the facility).

• Message selectetor kern.debug selects all priorities that are greater than debug.

• An asterisk in place of either the facility or the priority indicates "all." For example, *.debug

means all debug messages, while kern.* means all messages generated by the kernel.

• You can also use commas to specify multiple facilities. Two or more selectors can be

grouped together by using a semicolon.

Logging Actions:

The action field specifies one of five actions:

1. Log message to a file or a device. For example, /var/log/lpr.log or /dev/console.

2. Send a message to a user. You can specify multiple usernames by separating them with

commas (e.g., root, amrood).

3. Send a message to all users. In this case, the action field consists of an asterisk (e.g., *).

4. Pipe the message to a program. In this case, the program is specified after the UNIX pipe

UNIX BASICS 32

symbol (|).

5. Send the message to the syslog on another host. In this case, the action field consists of a

hostname, preceded by an at sign (e.g., @tutorialspoint.com)

The logger Command:

UNIX provides the logger command, which is an extremely useful command to deal with system

logging. The logger command sends logging messages to the syslogd daemon, and consequently

provokes system logging.

This means we can check from the command line at any time the syslogd daemon and its

configuration. The logger command provides a method for adding one-line entries to the system log

file from the command line.

The format of the command is:

logger [-i] [-f file] [-p priority] [-t tag] [message]...

Here is the detail of the parameters:

Option Description

-f filename Use the contents of file filename as the message to log.

-i Log the process ID of the logger process with each line.

-p priority

Enter the message with the specified priority (specified selector entry);

the message priority can be specified numerically, or as a

facility.priority pair. The default priority is user.notice.

-t tag Mark each line added to the log with the specified tag.

message
The string arguments whose contents are concatenated together in the

specified order, separated by the space

You can use Manpage Help to check complete syntax for this command.

Log Rotation:

Log files have the propensity to grow very fast and consume large amounts of disk space. To

enable log rotations, most distributions use tools such as newsyslog or logrotate.

These tools should be called on a frequent time interval using the cron daemon. Check the man

pages for newsyslog or logrotate for more details.

UNIX BASICS 33

Important Log Locations

All the system applications create their log files in /var/log and its sub-directories. Here are few

important applications and their coressponding log directories:

Application Directory

Httpd /var/log/httpd

Samba /var/log/samba

cron /var/log/

mail /var/log/

mysql /var/log/

Unix - Signals and Traps

Signals are software interrupts sent to a program to indicate that an important event has occurred.

The events can vary from user requests to illegal memory access errors. Some signals, such as the

interrupt signal, indicate that a user has asked the program to do something that is not in the usual

flow of control.

The following are some of the more common signals you might encounter and want to use in your

programs:

Signal Name
Signal

Number
Description

SIGHUP 1
Hang up detected on controlling terminal or death of controlling

process

SIGINT 2 Issued if the user sends an interrupt signal (Ctrl + C).

SIGQUIT 3 Issued if the user sends a quit signal (Ctrl + D).

SIGFPE 8 Issued if an illegal mathematical operation is attempted

SIGKILL 9
If a process gets this signal it must quit immediately and will not

perform any clean-up operations

SIGALRM 14 Alarm Clock signal (used for timers)

SIGTERM 15 Software termination signal (sent by kill by default).

UNIX BASICS 34

List of Signals:

There is an easy way to list down all the signals supported by your system. Just issue kill -l

command and it would display all the supported signals:

[amrood]$ kill -l

 1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL

 5) SIGTRAP 6) SIGABRT 7) SIGBUS 8) SIGFPE

 9) SIGKILL 10) SIGUSR1 11) SIGSEGV 12) SIGUSR2

13) SIGPIPE 14) SIGALRM 15) SIGTERM 16) SIGSTKFLT

17) SIGCHLD 18) SIGCONT 19) SIGSTOP 20) SIGTSTP

21) SIGTTIN 22) SIGTTOU 23) SIGURG 24) SIGXCPU

25) SIGXFSZ 26) SIGVTALRM 27) SIGPROF 28) SIGWINCH

29) SIGIO 30) SIGPWR 31) SIGSYS 34) SIGRTMIN

35) SIGRTMIN+1 36) SIGRTMIN+2 37) SIGRTMIN+3 38) SIGRTMIN+4

39) SIGRTMIN+5 40) SIGRTMIN+6 41) SIGRTMIN+7 42) SIGRTMIN+8

43) SIGRTMIN+9 44) SIGRTMIN+10 45) SIGRTMIN+11 46) SIGRTMIN+12

47) SIGRTMIN+13 48) SIGRTMIN+14 49) SIGRTMIN+15 50) SIGRTMAX-14

51) SIGRTMAX-13 52) SIGRTMAX-12 53) SIGRTMAX-11 54) SIGRTMAX-10

55) SIGRTMAX-9 56) SIGRTMAX-8 57) SIGRTMAX-7 58) SIGRTMAX-6

59) SIGRTMAX-5 60) SIGRTMAX-4 61) SIGRTMAX-3 62) SIGRTMAX-2

63) SIGRTMAX-1 64) SIGRTMAX

The actual list of signals varies between Solaris, HP-UX, and Linux.

Default Actions:

Every signal has a default action associated with it. The default action for a signal is the action that

a script or program performs when it receives a signal.

Some of the possible default actions are:

• Terminate the process.

• Ignore the signal.

• Dump core. This creates a file called core containing the memory image of the process

when it received the signal.

• Stop the process.

• Continue a stopped process.

UNIX BASICS 35

Sending Signals:

There are several methods of delivering signals to a program or script. One of the most common is

for a user to type CONTROL-C or the INTERRUPT key while a script is executing.

When you press the Ctrl+C key a SIGINT is sent to the script and as per defined default action

script terminates.

The other common method for delivering signals is to use the kill command whose syntax is as

follows:

[amrood]$ kill -signal pid

Here signal is either the number or name of the signal to deliver and pid is the process ID that the

signal should be sent to. For Example:

[amrood]$ kill -1 1001

Sends the HUP or hang-up signal to the program that is running with process ID 1001. To send a

kill signal to the same process use the folloing command:

[amrood]$ kill -9 1001

This would kill the process running with process ID 1001.

Trapping Signals:

When you press the Ctrl+C or Break key at your terminal during execution of a shell program,

normally that program is immediately terminated, and your command prompt returned. This may

not always be desirable. For instance, you may end up leaving a bunch of temporary files that won't

get cleaned up.

Trapping these signals is quite easy, and the trap command has the following syntax:

$ trap commands signals

Here command can be any valid Unix command, or even a user-defined function, and signal can be

a list of any number of signals you want to trap.

There are three common uses for trap in shell scripts:

1. Clean up temporary files

2. Ignore signals

Cleaning Up Temporary Files:

As an example of the trap command, the following shows how you can remove some files and then

exit if someone tries to abort the program from the terminal:

$ trap "rm -f $WORKDIR/work1$$ $WORKDIR/dataout$$; exit" 2

UNIX BASICS 36

From the point in the shell program that this trap is executed, the two files work1$$ and dataout$$

will be automatically removed if signal number 2 is received by the program.

So if the user interrupts execution of the program after this trap is executed, you can be assured that

these two files will be cleaned up. The exit command that follows the rm is necessary because

without it execution would continue in the program at the point that it left off when the signal was

received.

Signal number 1 is generated for hangup: Either someone intentionally hangs up the line or the line

gets accidentally disconnected.

You can modify the preceding trap to also remove the two specified files in this case by adding

signal number 1 to the list of signals:

$ trap "rm $WORKDIR/work1$$ $WORKDIR/dataout$$; exit" 1 2

Now these files will be removed if the line gets hung up or if the Ctrl+C key gets pressed.

The commands specified to trap must be enclosed in quotes if they contain more than one

command. Also note that the shell scans the command line at the time that the trap command gets

executed and also again when one of the listed signals is received.

So in the preceding example, the value of WORKDIR and $$ will be substituted at the time that the

trap command is executed. If you wanted this substitution to occur at the time that either signal 1 or

2 was received you can put the commands inside single quotes:

$ trap 'rm $WORKDIR/work1$$ $WORKDIR/dataout$$; exit' 1 2

Ignoring Signals:

If the command listed for trap is null, the specified signal will be ignored when received. For

example, the command:

$ trap '' 2

Specifies that the interrupt signal is to be ignored. You might want to ignore certain signals when

performing some operation that you don't want interrupted. You can specify multiple signals to be

ignored as follows:

$ trap '' 1 2 3 15

Note that the first argument must be specified for a signal to be ignored and is not equivalent to

writing the following, which has a separate meaning of its own:

$ trap 2

If you ignore a signal, all subshells also ignore that signal. However, if you specify an action to be

UNIX BASICS 37

taken on receipt of a signal, all subshells will still take the default action on receipt of that signal.

Resetting Traps:

After you've changed the default action to be taken on receipt of a signal, you can change it back

again with trap if you simply omit the first argument; so

$ trap 1 2

resets the action to be taken on receipt of signals 1 or 2 back to the default.

Unix - Useful Commands

This quick guide lists commands, including a syntax and brief description. For more detail, use:

$man command

Files and Directories:

These commands allow you to create directories and handle files.

Command Description

cat Display File Contents

cd Changes Directory to dirname

chgrp change file group

chmod Changing Permissions

cp Copy source file into destination

file Determine file type

find Find files

grep Search files for regular expressions.

head Display first few lines of a file

ln Create softlink on oldname

ls Display information about file type.

mkdir Create a new directory dirname

UNIX BASICS 38

more Display data in paginated form.

mv Move (Rename) a oldname to newname.

pwd Print current working directory.

rm Remove (Delete) filename

rmdir Delete an existing directory provided it is empty.

tail Prints last few lines in a file.

touch Update access and modification time of a file.

Manipulating data:

The contents of files can be compared and altered with the following commands.

Command Description

awk Pattern scanning and processing language

cmp Compare the contents of two files

comm Compare sorted data

cut Cut out selected fields of each line of a file

diff Differential file comparator

expand Expand tabs to spaces

join Join files on some common field

perl Data manipulation language

sed Stream text editor

sort Sort file data

split Split file into smaller files

tr Translate characters

uniq Report repeated lines in a file

wc Count words, lines, and characters

UNIX BASICS 39

vi Opens vi text editor

vim Opens vim text editor

fmt Simple text formatter

spell Check text for spelling error

ispell Check text for spelling error

ispell Check text for spelling error

emacs GNU project Emacs

ex, edit Line editor

emacs GNU project Emacs

emacs GNU project Emacs

Compressed Files:

Files may be compressed to save space. Compressed files can be created and examined:

Command Description

compress Compress files

gunzip Uncompress gzipped files

gzip GNU alternative compression method

uncompress Uncompress files

unzip List, test and extract compressed files in a ZIP archive

zcat Cat a compressed file

zcmp Compare compressed files

zdiff Compare compressed files

zmore File perusal filter for crt viewing of compressed text

Getting Information:

Various Unix manuals and documentation are available on-line. The following Shell commands

give information:

UNIX BASICS 40

Command Description

apropos Locate commands by keyword lookup

info Displays command information pages online

man Displays manual pages online

whatis Search the whatis database for complete words.

yelp GNOME help viewer

Network Communication:

These following commands are used to send and receive files from a local UNIX hosts to the

remote host around the world.

Command Description

ftp File transfer program

rcp Remote file copy

rlogin Remote login to a UNIX host

rsh Remote shell

tftp Trivial file transfer program

telnet Make terminal connection to another host

ssh Secure shell terminal or command connection

scp Secure shell remote file copy

sftp secure shell file transfer program

Some of these commands may be restricted at your computer for security reasons.

Messages between Users:

The UNIX systems support on-screen messages to other users and world-wide electronic mail:

Command Description

evolution GUI mail handling tool on Linux

mail Simple send or read mail program

UNIX BASICS 41

mesg Permit or deny messages

parcel Send files to another user

pine Vdu-based mail utility

talk Talk to another user

write Write message to another user

Programming Utilities:

The following programming tools and languages are available based on what you have installed on

your Unix.

Command Description

dbx Sun debugger

gdb GNU debugger

make Maintain program groups and compile programs.

nm Print program's name list

size Print program's sizes

strip Remove symbol table and relocation bits

cb C program beautifier

cc ANSI C compiler for Suns SPARC systems

ctrace C program debugger

gcc GNU ANSI C Compiler

indent Indent and format C program source

bc Interactive arithmetic language processor

gcl GNU Common Lisp

UNIX BASICS 42

perl General purpose language

php Web page embedded language

py Python language interpreter

asp Web page embedded language

CC C++ compiler for Suns SPARC systems

g++ GNU C++ Compiler

javac JAVA compiler

appletvieweir JAVA applet viewer

netbeans Java integrated development environment on Linux

sqlplus Run the Oracle SQL interpreter

sqlldr Run the Oracle SQL data loader

mysql Run the mysql SQL interpreter

Misc Commands:

These commands list or alter information about the system:

Command Description

chfn Change your finger information

chgrp Change the group ownership of a file

chown Change owner

date Print the date

determin Automatically find terminal type

du Print amount of disk usage

echo Echo arguments to the standard options

exit Quit the system

finger Print information about logged-in users

UNIX BASICS 43

groupadd Create a user group

groups Show group memberships

homequota Show quota and file usage

iostat Report I/O statistics

kill Send a signal to a process

last Show last logins of users

logout log off UNIX

lun List user names or login ID

netstat Show network status

passwd Change user password

passwd Change your login password

printenv Display value of a shell variable

ps Display the status of current processes

ps Print process status statistics

quota -v Display disk usage and limits

reset Reset terminal mode

script Keep script of terminal session

script Save the output of a command or process

setenv Set environment variables

stty Set terminal options

time Time a command

top Display all system processes

tset Set terminal mode

tty Print current terminal name

UNIX BASICS 44

umask Show the permissions that are given to view files by default

uname Display name of the current system

uptime Get the system up time

useradd Create a user account

users Print names of logged in users

vmstat Report virtual memory statistics

w Show what logged in users are doing

who List logged in users

Unix - Shell Builtin Functions

The most of the part of this tutorial covered Bourne Shell but this page list down all the

mathematical builti-in functions available in Korn Shell.

The Korn shell provides access to the standard set of mathematical functions. They are called

using C function call syntax.

Function Description

abs Absolute value

log Natural logarithm

acos Arc cosine

sin Sine

asin Arc sine

sinh Hyperbolic sine

cos Cosine

sqrt Square root

cosh Hyperbolic cosine

tan Tangent

UNIX BASICS 45

exp Exponential function

tanh Hyperbolic tangent

int Integer part of floating-point number

Unix - Basic Utilities

So far you must have got some idea about Unix OS and nature of its basic commands. This

tutorial would cover few very basic but important Unix utilities which you would use in your

day to day life.

Printing Files:

Before you print a file on a UNIX system, you may want to reformat it to adjust the margins,

highlight some words, and so on. Most files can also be printed without reformatting, but the

raw printout may not look quite as nice.

Many versions of UNIX include two powerful text formatters, nroff and troff. They are not

covered in this tutorial but you would quit a lot material on the net for these utilities.

The pr Command:

The pr command does minor formatting of files on the terminal screen or for a printer. For

example, if you have a long list of names in a file, you can format it onscreen into two or more

columns.

Here is the syntax of pr command:

pr option(s) filename(s)

The pr changes the format of the file only on the screen or on the printed copy; it doesn't modify

the original file. Following table lists some pr options:

Option Description

-k Produces k columns of output

-d Double-spaces the output (not on all pr versions).

-h "header" Takes the next item as a report header.

-t Eliminates printing of header and top/bottom margins.

-l PAGE_LENGTH
Set the page length to PAGE_LENGTH (66) lines. Default number of

lines of text 56.

UNIX BASICS 46

-o MARGIN Offset each line with MARGIN (zero) spaces.

-w PAGE_WIDTH
Set page width to PAGE_WIDTH (72) characters for multiple text-

column output only.

Before using pr, here are the contents of a sample file named food

[amrood]$cat food

Sweet Tooth

Bangkok Wok

Mandalay

Afghani Cuisine

Isle of Java

Big Apple Deli

Sushi and Sashimi

Tio Pepe's Peppers

........

[amrood]$

Let's use pr command to make a two-column report with the header Restaurants:

[amrood]$pr -2 -h "Restaurants" food

Nov 7 9:58 1997 Restaurants Page 1

Sweet Tooth Isle of Java

Bangkok Wok Big Apple Deli

Mandalay Sushi and Sashimi

Afghani Cuisine Tio Pepe's Peppers

........

[amrood]$

The lp and lpr Commands:

The command lp or lpr prints a file onto paper as opposed to the screen display. Once you are

ready with formatting using pr command, you can use any of these commands to print your file

on printer connected with your computer.

UNIX BASICS 47

Your system administrator has probably set up a default printer at your site. To print a file

named food on the default printer, use the lp or lpr command, as in this example:

[amrood]$lp food

request id is laserp-525 (1 file)

[amrood]$

The lp command shows an ID that you can use to cancel the print job or check its status.

• If you are using lp command, you can use -nNum option to print Num number of copies.

Along with the command lpr, you can use -Num for the same.

• If there are multiple printers connected with the shared network, then you can choose a

printer using -dprinter option along with lp command and for the same purpose you can

use -Pprinter option along with lpr command. Here printer is the printer name.

The lpstat and lpq Commands:

The lpstat command shows what's in the printer queue: request IDs, owners, file sizes, when the

jobs were sent for printing, and the status of the requests.

Use lpstat -o if you want to see all output requests rather than just your own. Requests are shown

in the order they'll be printed:

[amrood]$lpstat -o

laserp-573 john 128865 Nov 7 11:27 on laserp

laserp-574 grace 82744 Nov 7 11:28

laserp-575 john 23347 Nov 7 11:35

[amrood]$

The lpq gives slightly different information than lpstat -o:

[amrood]$lpq

laserp is ready and printing

Rank Owner Job Files Total Size

active john 573 report.ps 128865 bytes

1st grace 574 ch03.ps ch04.ps 82744 bytes

2nd john 575 standard input 23347 bytes

[amrood]$

Here the first line displays the printer status. If the printer is disabled or out of paper, you may

see different messages on this first line.

UNIX BASICS 48

The cancel and lprm Commands:

The cancel terminates a printing request from the lp command. The lprm terminates lpr

requests. You can specify either the ID of the request (displayed by lp or lpq) or the name of the

printer.

[amrood]$cancel laserp-575

request "laserp-575" cancelled

[amrood]$

To cancel whatever request is currently printing, regardless of its ID, simply enter cancel and the

printer name:

[amrood]$cancel laserp

request "laserp-573" cancelled

[amrood]$

The lprm command will cancel the active job if it belongs to you. Otherwise, you can give job

numbers as arguments, or use a dash (-) to remove all of your jobs:

[amrood]$lprm 575

dfA575diamond dequeued

cfA575diamond dequeued

[amrood]$

The lprm command tells you the actual filenames removed from the printer queue.

Sending Email:

You use the Unix mail command to send and receive mail. Here is the syntax to send an email:

[amrood]$mail [-s subject] [-c cc-addr] [-b bcc-addr] to-addr

Here are important options related to mail command:

Option Description

-s Specify subject on command line.

-c
Send carbon copies to list of users. List should be a comma-separated

list of names.

-b
Send blind carbon copies to list. List should be a comma-separated list

of names.

UNIX BASICS 49

Following is the example to send a test message to amrood@gmail.com.

[amrood]$mail -s "Test Message" admin@yahoo.com

You are then expected to type in your message, followed by an "control-D" at the beginning of a

line. To stop simply type dot (.) as follows:

Hi,

This is a test

.

Cc:

You can send a complete file using a redirect < operator as follows:

[amrood]$mail -s "Report 05/06/07" admin@yahoo.com < demo.txt

To check incoming email at your Unix system you simply type email as follows:

[amrood]$mail

no email

UNIX BASICS 50

